Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relopabVD Structured version   Visualization version   Unicode version

Theorem relopabVD 39137
Description: Virtual deduction proof of relopab 5247. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5247 is relopabVD 39137 without virtual deductions and was automatically derived from relopabVD 39137.
1::  |-  (. y  =  v  ->.  y  =  v ).
2:1:  |-  (. y  =  v  ->.  <. x ,. y >.  =  <. x ,. v  >. ).
3::  |-  (. y  =  v ,. x  =  u  ->.  x  =  u ).
4:3:  |-  (. y  =  v ,. x  =  u  ->.  <. x ,. v >.  =  <.  u ,  v >. ).
5:2,4:  |-  (. y  =  v ,. x  =  u  ->.  <. x ,. y >.  =  <.  u ,  v >. ).
6:5:  |-  (. y  =  v ,. x  =  u  ->.  ( z  =  <. x ,. y  >.  ->  z  =  <. u ,  v >. ) ).
7:6:  |-  (. y  =  v  ->.  ( x  =  u  ->  ( z  =  <. x ,.  y >.  ->  z  =  <. u ,  v >. ) ) ).
8:7:  |-  ( y  =  v  ->  ( x  =  u  ->  ( z  =  <. x ,. y  >.  ->  z  =  <. u ,  v >. ) ) )
9:8:  |-  ( E. v y  =  v  ->  E. v ( x  =  u  ->  ( z  =  <. x ,  y >.  ->  z  =  <. u ,  v >. ) ) )
90::  |-  ( v  =  y  <->  y  =  v )
91:90:  |-  ( E. v v  =  y  <->  E. v y  =  v )
92::  |-  E. v v  =  y
10:91,92:  |-  E. v y  =  v
11:9,10:  |-  E. v ( x  =  u  ->  ( z  =  <. x ,. y >.  ->  z  =  <. u ,  v >. ) )
12:11:  |-  ( x  =  u  ->  E. v ( z  =  <. x ,. y >.  ->  z  =  <. u ,  v >. ) )
13::  |-  ( E. v ( z  =  <. x ,. y >.  ->  z  =  <. u  ,  v >. )  ->  ( z  =  <. x ,  y >.  ->  E. v z  =  <. u ,  v >. ) )
14:12,13:  |-  ( x  =  u  ->  ( z  =  <. x ,. y >.  ->  E. v  z  =  <. u ,  v >. ) )
15:14:  |-  ( E. u x  =  u  ->  E. u ( z  =  <. x ,. y  >.  ->  E. v z  =  <. u ,  v >. ) )
150::  |-  ( u  =  x  <->  x  =  u )
151:150:  |-  ( E. u u  =  x  <->  E. u x  =  u )
152::  |-  E. u u  =  x
16:151,152:  |-  E. u x  =  u
17:15,16:  |-  E. u ( z  =  <. x ,. y >.  ->  E. v z  =  <.  u ,  v >. )
18:17:  |-  ( z  =  <. x ,. y >.  ->  E. u E. v z  =  <.  u ,  v >. )
19:18:  |-  ( E. y z  =  <. x ,. y >.  ->  E. y E. u  E. v z  =  <. u ,  v >. )
20::  |-  ( E. y E. u E. v z  =  <. u ,. v >.  ->  E. u E. v z  =  <. u ,  v >. )
21:19,20:  |-  ( E. y z  =  <. x ,. y >.  ->  E. u E. v z  =  <. u ,  v >. )
22:21:  |-  ( E. x E. y z  =  <. x ,. y >.  ->  E. x  E. u E. v z  =  <. u ,  v >. )
23::  |-  ( E. x E. u E. v z  =  <. u ,. v >.  ->  E. u E. v z  =  <. u ,  v >. )
24:22,23:  |-  ( E. x E. y z  =  <. x ,. y >.  ->  E. u  E. v z  =  <. u ,  v >. )
25:24:  |-  { z  |  E. x E. y z  =  <. x ,. y >. }  C_  { z  |  E. u E. v z  =  <. u ,  v >. }
26::  |-  x  e.  _V
27::  |-  y  e.  _V
28:26,27:  |-  ( x  e.  _V  /\  y  e.  _V )
29:28:  |-  ( z  =  <. x ,. y >.  <->  ( z  =  <. x ,. y  >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) )
30:29:  |-  ( E. y z  =  <. x ,. y >.  <->  E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) )
31:30:  |-  ( E. x E. y z  =  <. x ,. y >.  <->  E. x  E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) )
32:31:  |-  { z  |  E. x E. y z  =  <. x ,. y >. }  =  {  z  |  E. x E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) }
320:25,32:  |-  { z  |  E. x E. y ( z  =  <. x ,. y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) }  C_  { z  |  E. u E. v z  =  <. u ,  v >. }
33::  |-  u  e.  _V
34::  |-  v  e.  _V
35:33,34:  |-  ( u  e.  _V  /\  v  e.  _V )
36:35:  |-  ( z  =  <. u ,. v >.  <->  ( z  =  <. u ,. v  >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) )
37:36:  |-  ( E. v z  =  <. u ,. v >.  <->  E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) )
38:37:  |-  ( E. u E. v z  =  <. u ,. v >.  <->  E. u  E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) )
39:38:  |-  { z  |  E. u E. v z  =  <. u ,. v >. }  =  {  z  |  E. u E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) }
40:320,39:  |-  { z  |  E. x E. y ( z  =  <. x ,. y >.  /\  ( x  e.  _V  /\  y  e.  _V ) ) }  C_  { z  |  E. u E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) ) }
41::  |-  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V  ) }  =  { z  |  E. x E. y ( z  =  <. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V ) )  }
42::  |-  { <. u ,. v >.  |  ( u  e.  _V  /\  v  e.  _V  ) }  =  { z  |  E. u E. v ( z  =  <. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V ) )  }
43:40,41,42:  |-  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V  ) }  C_  { <. u ,  v >.  |  ( u  e.  _V  /\  v  e.  _V ) }
44::  |-  { <. u ,. v >.  |  ( u  e.  _V  /\  v  e.  _V  ) }  =  ( _V  X.  _V )
45:43,44:  |-  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V  ) }  C_  ( _V  X.  _V )
46:28:  |-  ( ph  ->  ( x  e.  _V  /\  y  e.  _V ) )
47:46:  |-  { <. x ,. y >.  |  ph }  C_  { <. x ,. y >.  |  ( x  e.  _V  /\  y  e.  _V ) }
48:45,47:  |-  { <. x ,. y >.  |  ph }  C_  ( _V  X.  _V )
qed:48:  |-  Rel  { <. x ,. y >.  |  ph }
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relopabVD  |-  Rel  { <. x ,  y >.  |  ph }

Proof of Theorem relopabVD
Dummy variables  z 
v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  x  e. 
_V
2 vex 3203 . . . . . 6  |-  y  e. 
_V
31, 2pm3.2i 471 . . . . 5  |-  ( x  e.  _V  /\  y  e.  _V )
43a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  _V  /\  y  e.  _V )
)
54ssopab2i 5003 . . 3  |-  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }
63biantru 526 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>. 
<->  ( z  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
76exbii 1774 . . . . . . . . 9  |-  ( E. y  z  =  <. x ,  y >.  <->  E. y
( z  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
87exbii 1774 . . . . . . . 8  |-  ( E. x E. y  z  =  <. x ,  y
>. 
<->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
98abbii 2739 . . . . . . 7  |-  { z  |  E. x E. y  z  =  <. x ,  y >. }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e. 
_V  /\  y  e.  _V ) ) }
10 ax6ev 1890 . . . . . . . . . . . . . . 15  |-  E. u  u  =  x
11 equcom 1945 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  <->  x  =  u )
1211exbii 1774 . . . . . . . . . . . . . . 15  |-  ( E. u  u  =  x  <->  E. u  x  =  u )
1310, 12mpbi 220 . . . . . . . . . . . . . 14  |-  E. u  x  =  u
14 ax6ev 1890 . . . . . . . . . . . . . . . . . . 19  |-  E. v 
v  =  y
15 equcom 1945 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  y  <->  y  =  v )
1615exbii 1774 . . . . . . . . . . . . . . . . . . 19  |-  ( E. v  v  =  y  <->  E. v  y  =  v )
1714, 16mpbi 220 . . . . . . . . . . . . . . . . . 18  |-  E. v 
y  =  v
18 idn1 38790 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (. y  =  v  ->.  y  =  v ).
19 opeq2 4403 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  v  ->  <. x ,  y >.  =  <. x ,  v >. )
2018, 19e1a 38852 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (. y  =  v  ->.  <. x ,  y
>.  =  <. x ,  v >. ).
21 idn2 38838 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (. y  =  v ,. x  =  u  ->.  x  =  u ).
22 opeq1 4402 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  u  ->  <. x ,  v >.  =  <. u ,  v >. )
2321, 22e2 38856 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (. y  =  v ,. x  =  u  ->.  <. x ,  v
>.  =  <. u ,  v >. ).
24 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
x ,  y >.  =  <. x ,  v
>.  ->  ( <. x ,  y >.  =  <. u ,  v >.  <->  <. x ,  v >.  =  <. u ,  v >. )
)
2524biimprd 238 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
x ,  y >.  =  <. x ,  v
>.  ->  ( <. x ,  v >.  =  <. u ,  v >.  ->  <. x ,  y >.  =  <. u ,  v >. )
)
2620, 23, 25e12 38951 . . . . . . . . . . . . . . . . . . . . . 22  |-  (. y  =  v ,. x  =  u  ->.  <. x ,  y
>.  =  <. u ,  v >. ).
27 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
x ,  y >.  =  <. u ,  v
>.  ->  ( z  = 
<. x ,  y >.  <->  z  =  <. u ,  v
>. ) )
2827biimpd 219 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  y >.  =  <. u ,  v
>.  ->  ( z  = 
<. x ,  y >.  ->  z  =  <. u ,  v >. )
)
2926, 28e2 38856 . . . . . . . . . . . . . . . . . . . . 21  |-  (. y  =  v ,. x  =  u  ->.  ( z  = 
<. x ,  y >.  ->  z  =  <. u ,  v >. ) ).
3029in2 38830 . . . . . . . . . . . . . . . . . . . 20  |-  (. y  =  v  ->.  ( x  =  u  ->  ( z  =  <. x ,  y
>.  ->  z  =  <. u ,  v >. )
) ).
3130in1 38787 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  v  ->  (
x  =  u  -> 
( z  =  <. x ,  y >.  ->  z  =  <. u ,  v
>. ) ) )
3231eximi 1762 . . . . . . . . . . . . . . . . . 18  |-  ( E. v  y  =  v  ->  E. v ( x  =  u  ->  (
z  =  <. x ,  y >.  ->  z  =  <. u ,  v
>. ) ) )
3317, 32ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  E. v
( x  =  u  ->  ( z  = 
<. x ,  y >.  ->  z  =  <. u ,  v >. )
)
343319.37iv 1911 . . . . . . . . . . . . . . . 16  |-  ( x  =  u  ->  E. v
( z  =  <. x ,  y >.  ->  z  =  <. u ,  v
>. ) )
35 19.37v 1910 . . . . . . . . . . . . . . . . 17  |-  ( E. v ( z  = 
<. x ,  y >.  ->  z  =  <. u ,  v >. )  <->  ( z  =  <. x ,  y >.  ->  E. v 
z  =  <. u ,  v >. )
)
3635biimpi 206 . . . . . . . . . . . . . . . 16  |-  ( E. v ( z  = 
<. x ,  y >.  ->  z  =  <. u ,  v >. )  ->  ( z  =  <. x ,  y >.  ->  E. v 
z  =  <. u ,  v >. )
)
3734, 36syl 17 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  (
z  =  <. x ,  y >.  ->  E. v 
z  =  <. u ,  v >. )
)
3837eximi 1762 . . . . . . . . . . . . . 14  |-  ( E. u  x  =  u  ->  E. u ( z  =  <. x ,  y
>.  ->  E. v  z  = 
<. u ,  v >.
) )
3913, 38ax-mp 5 . . . . . . . . . . . . 13  |-  E. u
( z  =  <. x ,  y >.  ->  E. v 
z  =  <. u ,  v >. )
403919.37iv 1911 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  E. u E. v 
z  =  <. u ,  v >. )
4140eximi 1762 . . . . . . . . . . 11  |-  ( E. y  z  =  <. x ,  y >.  ->  E. y E. u E. v  z  =  <. u ,  v
>. )
42 19.9v 1896 . . . . . . . . . . . 12  |-  ( E. y E. u E. v  z  =  <. u ,  v >.  <->  E. u E. v  z  =  <. u ,  v >.
)
4342biimpi 206 . . . . . . . . . . 11  |-  ( E. y E. u E. v  z  =  <. u ,  v >.  ->  E. u E. v  z  =  <. u ,  v >.
)
4441, 43syl 17 . . . . . . . . . 10  |-  ( E. y  z  =  <. x ,  y >.  ->  E. u E. v  z  =  <. u ,  v >.
)
4544eximi 1762 . . . . . . . . 9  |-  ( E. x E. y  z  =  <. x ,  y
>.  ->  E. x E. u E. v  z  =  <. u ,  v >.
)
46 19.9v 1896 . . . . . . . . . 10  |-  ( E. x E. u E. v  z  =  <. u ,  v >.  <->  E. u E. v  z  =  <. u ,  v >.
)
4746biimpi 206 . . . . . . . . 9  |-  ( E. x E. u E. v  z  =  <. u ,  v >.  ->  E. u E. v  z  =  <. u ,  v >.
)
4845, 47syl 17 . . . . . . . 8  |-  ( E. x E. y  z  =  <. x ,  y
>.  ->  E. u E. v 
z  =  <. u ,  v >. )
4948ss2abi 3674 . . . . . . 7  |-  { z  |  E. x E. y  z  =  <. x ,  y >. }  C_  { z  |  E. u E. v  z  =  <. u ,  v >. }
509, 49eqsstr3i 3636 . . . . . 6  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V )
) }  C_  { z  |  E. u E. v  z  =  <. u ,  v >. }
51 vex 3203 . . . . . . . . . . 11  |-  u  e. 
_V
52 vex 3203 . . . . . . . . . . 11  |-  v  e. 
_V
5351, 52pm3.2i 471 . . . . . . . . . 10  |-  ( u  e.  _V  /\  v  e.  _V )
5453biantru 526 . . . . . . . . 9  |-  ( z  =  <. u ,  v
>. 
<->  ( z  =  <. u ,  v >.  /\  (
u  e.  _V  /\  v  e.  _V )
) )
5554exbii 1774 . . . . . . . 8  |-  ( E. v  z  =  <. u ,  v >.  <->  E. v
( z  =  <. u ,  v >.  /\  (
u  e.  _V  /\  v  e.  _V )
) )
5655exbii 1774 . . . . . . 7  |-  ( E. u E. v  z  =  <. u ,  v
>. 
<->  E. u E. v
( z  =  <. u ,  v >.  /\  (
u  e.  _V  /\  v  e.  _V )
) )
5756abbii 2739 . . . . . 6  |-  { z  |  E. u E. v  z  =  <. u ,  v >. }  =  { z  |  E. u E. v ( z  =  <. u ,  v
>.  /\  ( u  e. 
_V  /\  v  e.  _V ) ) }
5850, 57sseqtri 3637 . . . . 5  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  _V  /\  y  e.  _V )
) }  C_  { z  |  E. u E. v ( z  = 
<. u ,  v >.  /\  ( u  e.  _V  /\  v  e.  _V )
) }
59 df-opab 4713 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) }
60 df-opab 4713 . . . . 5  |-  { <. u ,  v >.  |  ( u  e.  _V  /\  v  e.  _V ) }  =  { z  |  E. u E. v
( z  =  <. u ,  v >.  /\  (
u  e.  _V  /\  v  e.  _V )
) }
6158, 59, 603sstr4i 3644 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }  C_  { <. u ,  v >.  |  ( u  e.  _V  /\  v  e.  _V ) }
62 df-xp 5120 . . . . 5  |-  ( _V 
X.  _V )  =  { <. u ,  v >.  |  ( u  e. 
_V  /\  v  e.  _V ) }
6362eqcomi 2631 . . . 4  |-  { <. u ,  v >.  |  ( u  e.  _V  /\  v  e.  _V ) }  =  ( _V  X.  _V )
6461, 63sseqtri 3637 . . 3  |-  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }  C_  ( _V  X.  _V )
655, 64sstri 3612 . 2  |-  { <. x ,  y >.  |  ph }  C_  ( _V  X.  _V )
66 df-rel 5121 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  <->  { <. x ,  y >.  |  ph }  C_  ( _V  X.  _V ) )
6766biimpri 218 . 2  |-  ( {
<. x ,  y >.  |  ph }  C_  ( _V  X.  _V )  ->  Rel  { <. x ,  y
>.  |  ph } )
6865, 67e0a 38999 1  |-  Rel  { <. x ,  y >.  |  ph }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   <.cop 4183   {copab 4712    X. cxp 5112   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-vd1 38786  df-vd2 38794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator