Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTVD Structured version   Visualization version   Unicode version

Theorem csbfv12gALTVD 39135
Description: Virtual deduction proof of csbfv12gALTOLD 39052. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALTOLD 39052 is csbfv12gALTVD 39135 without virtual deductions and was automatically derived from csbfv12gALTVD 39135.
1::  |-  (. A  e.  C  ->.  A  e.  C ).
2:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y }  =  {  y } ).
3:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B  } )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } ) ).
4:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { B }  =  {  [_ A  /  x ]_ B } ).
5:4:  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
6:3,5:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B  } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
7:1:  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F " {  B } )  =  { y }  <->  [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ { y } ) ).
8:6,2:  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ ( F " {  B } )  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
9:7,8:  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F " {  B } )  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ).
10:9:  |-  (. A  e.  C  ->.  A. y ( [. A  /  x ]. ( F  " { B } )  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
11:10:  |-  (. A  e.  C  ->.  { y  |  [. A  /  x ]. ( F  " { B } )  =  { y } }  =  { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
12:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F  " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B } )  =  { y } } ).
13:11,12:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F  " { B } )  =  { y } }  =  { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y  } } ).
14:13:  |-  (. A  e.  C  ->.  U. [_ A  /  x ]_ { y  |  (  F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F "  { [_ A  /  x ]_ B } )  =  { y } } ).
15:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  (  F " { B } )  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } } ).
16:14,15:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  (  F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
17::  |-  ( F `  B )  =  U. { y  |  ( F " { B } )  =  { y } }
18:17:  |-  A. x ( F `  B )  =  U. { y  |  ( F " { B  } )  =  { y } }
19:1,18:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } } ).
20:16,19:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
21::  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
22:20,21:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ).
qed:22:  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTVD  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )

Proof of Theorem csbfv12gALTVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 38790 . . . . . . . . . . 11  |-  (. A  e.  C  ->.  A  e.  C ).
2 sbceqg 3984 . . . . . . . . . . 11  |-  ( A  e.  C  ->  ( [. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } ) )
31, 2e1a 38852 . . . . . . . . . 10  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y } ) ).
4 csbima12 5483 . . . . . . . . . . . . . 14  |-  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )
54a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } ) )
61, 5e1a 38852 . . . . . . . . . . . 12  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " [_ A  /  x ]_ { B } ) ).
7 csbsng 4243 . . . . . . . . . . . . . 14  |-  ( A  e.  C  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
81, 7e1a 38852 . . . . . . . . . . . . 13  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B } ).
9 imaeq2 5462 . . . . . . . . . . . . 13  |-  ( [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) )
108, 9e1a 38852 . . . . . . . . . . . 12  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
11 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( [_ A  /  x ]_ ( F " { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )  ->  ( [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  <-> 
( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ) )
1211biimprd 238 . . . . . . . . . . . 12  |-  ( [_ A  /  x ]_ ( F " { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )  ->  ( ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  ->  [_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ) )
136, 10, 12e11 38913 . . . . . . . . . . 11  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
14 csbconstg 3546 . . . . . . . . . . . 12  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y }  =  { y } )
151, 14e1a 38852 . . . . . . . . . . 11  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y }  =  { y } ).
16 eqeq12 2635 . . . . . . . . . . . 12  |-  ( (
[_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  /\  [_ A  /  x ]_ { y }  =  { y } )  ->  ( [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) )
1716ex 450 . . . . . . . . . . 11  |-  ( [_ A  /  x ]_ ( F " { B }
)  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  ->  ( [_ A  /  x ]_ { y }  =  { y }  ->  ( [_ A  /  x ]_ ( F " { B }
)  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ) )
1813, 15, 17e11 38913 . . . . . . . . . 10  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ ( F
" { B }
)  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
19 bibi1 341 . . . . . . . . . . 11  |-  ( (
[. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } )  ->  ( ( [. A  /  x ]. ( F " { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  <-> 
( [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ) )
2019biimprd 238 . . . . . . . . . 10  |-  ( (
[. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } )  ->  ( ( [_ A  /  x ]_ ( F " { B }
)  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ->  ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ) )
213, 18, 20e11 38913 . . . . . . . . 9  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
2221gen11 38841 . . . . . . . 8  |-  (. A  e.  C  ->.  A. y ( [. A  /  x ]. ( F " { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
23 abbi 2737 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  <->  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } )
2423biimpi 206 . . . . . . . 8  |-  ( A. y ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ->  { y  | 
[. A  /  x ]. ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
2522, 24e1a 38852 . . . . . . 7  |-  (. A  e.  C  ->.  { y  | 
[. A  /  x ]. ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
26 csbab 4008 . . . . . . . . 9  |-  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } }
2726a1i 11 . . . . . . . 8  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } } )
281, 27e1a 38852 . . . . . . 7  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } } ).
29 eqeq2 2633 . . . . . . . 8  |-  ( { y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( [_ A  /  x ]_ {
y  |  ( F
" { B }
)  =  { y } }  =  {
y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  <->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
3029biimpd 219 . . . . . . 7  |-  ( { y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( [_ A  /  x ]_ {
y  |  ( F
" { B }
)  =  { y } }  =  {
y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
3125, 28, 30e11 38913 . . . . . 6  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
32 unieq 4444 . . . . . 6  |-  ( [_ A  /  x ]_ {
y  |  ( F
" { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
)
3331, 32e1a 38852 . . . . 5  |-  (. A  e.  C  ->.  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
34 csbuni 4466 . . . . . . 7  |-  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }
3534a1i 11 . . . . . 6  |-  ( A  e.  C  ->  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } } )
361, 35e1a 38852 . . . . 5  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } } ).
37 eqeq2 2633 . . . . . 6  |-  ( U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  <->  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
) )
3837biimpd 219 . . . . 5  |-  ( U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  ->  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
3933, 36, 38e11 38913 . . . 4  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
40 dffv4 6188 . . . . . 6  |-  ( F `
 B )  = 
U. { y  |  ( F " { B } )  =  {
y } }
4140ax-gen 1722 . . . . 5  |-  A. x
( F `  B
)  =  U. {
y  |  ( F
" { B }
)  =  { y } }
42 csbeq2 3537 . . . . . 6  |-  ( A. x ( F `  B )  =  U. { y  |  ( F " { B } )  =  {
y } }  ->  [_ A  /  x ]_ ( F `  B )  =  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } }
)
4342a1i 11 . . . . 5  |-  ( A  e.  C  ->  ( A. x ( F `  B )  =  U. { y  |  ( F " { B } )  =  {
y } }  ->  [_ A  /  x ]_ ( F `  B )  =  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } }
) )
441, 41, 43e10 38919 . . . 4  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B
)  =  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } } ).
45 eqeq2 2633 . . . . 5  |-  ( [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ ( F `  B
)  =  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  <->  [_ A  /  x ]_ ( F `  B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
4645biimpd 219 . . . 4  |-  ( [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ ( F `  B
)  =  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  ->  [_ A  /  x ]_ ( F `
 B )  = 
U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
) )
4739, 44, 46e11 38913 . . 3  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B
)  =  U. {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
48 dffv4 6188 . . 3  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }
49 eqeq2 2633 . . . 4  |-  ( (
[_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( [_ A  /  x ]_ ( F `  B )  =  (
[_ A  /  x ]_ F `  [_ A  /  x ]_ B )  <->  [_ A  /  x ]_ ( F `  B
)  =  U. {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ) )
5049biimprcd 240 . . 3  |-  ( [_ A  /  x ]_ ( F `  B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ) )
5147, 48, 50e10 38919 . 2  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B
)  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ).
5251in1 38787 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   [.wsbc 3435   [_csb 3533   {csn 4177   U.cuni 4436   "cima 5117   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator