MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcom Structured version   Visualization version   Unicode version

Theorem csbcom 3994
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbcom  |-  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem csbcom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbccom 3509 . . . 4  |-  ( [. A  /  x ]. [. B  /  y ]. z  e.  C  <->  [. B  /  y ]. [. A  /  x ]. z  e.  C
)
2 sbcel2 3989 . . . . 5  |-  ( [. B  /  y ]. z  e.  C  <->  z  e.  [_ B  /  y ]_ C
)
32sbcbii 3491 . . . 4  |-  ( [. A  /  x ]. [. B  /  y ]. z  e.  C  <->  [. A  /  x ]. z  e.  [_ B  /  y ]_ C
)
4 sbcel2 3989 . . . . 5  |-  ( [. A  /  x ]. z  e.  C  <->  z  e.  [_ A  /  x ]_ C
)
54sbcbii 3491 . . . 4  |-  ( [. B  /  y ]. [. A  /  x ]. z  e.  C  <->  [. B  /  y ]. z  e.  [_ A  /  x ]_ C )
61, 3, 53bitr3i 290 . . 3  |-  ( [. A  /  x ]. z  e.  [_ B  /  y ]_ C  <->  [. B  /  y ]. z  e.  [_ A  /  x ]_ C )
7 sbcel2 3989 . . 3  |-  ( [. A  /  x ]. z  e.  [_ B  /  y ]_ C  <->  z  e.  [_ A  /  x ]_ [_ B  /  y ]_ C
)
8 sbcel2 3989 . . 3  |-  ( [. B  /  y ]. z  e.  [_ A  /  x ]_ C  <->  z  e.  [_ B  /  y ]_ [_ A  /  x ]_ C )
96, 7, 83bitr3i 290 . 2  |-  ( z  e.  [_ A  /  x ]_ [_ B  / 
y ]_ C  <->  z  e.  [_ B  /  y ]_ [_ A  /  x ]_ C )
109eqriv 2619 1  |-  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  ovmpt2s  6784  fvmpt2curryd  7397
  Copyright terms: Public domain W3C validator