MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2 Structured version   Visualization version   Unicode version

Theorem sbcel2 3989
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel2  |-  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem sbcel2
StepHypRef Expression
1 sbcel12 3983 . . 3  |-  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )
2 csbconstg 3546 . . . 4  |-  ( A  e.  _V  ->  [_ A  /  x ]_ B  =  B )
32eleq1d 2686 . . 3  |-  ( A  e.  _V  ->  ( [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  B  e.  [_ A  /  x ]_ C ) )
41, 3syl5bb 272 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
5 sbcex 3445 . . . 4  |-  ( [. A  /  x ]. B  e.  C  ->  A  e. 
_V )
65con3i 150 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. B  e.  C
)
7 noel 3919 . . . 4  |-  -.  B  e.  (/)
8 csbprc 3980 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ C  =  (/) )
98eleq2d 2687 . . . 4  |-  ( -.  A  e.  _V  ->  ( B  e.  [_ A  /  x ]_ C  <->  B  e.  (/) ) )
107, 9mtbiri 317 . . 3  |-  ( -.  A  e.  _V  ->  -.  B  e.  [_ A  /  x ]_ C )
116, 102falsed 366 . 2  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
124, 11pm2.61i 176 1  |-  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  csbcom  3994  sbccsb  4004  sbnfc2  4007  csbab  4008  sbcssg  4085  csbuni  4466  csbxp  5200  csbdm  5318  issubc  16495  esum2dlem  30154  bj-sbeq  32896  bj-sbceqgALT  32897  bj-sels  32950  f1omptsnlem  33183  csbcom2fi  33934  disjinfi  39380  iccelpart  41369
  Copyright terms: Public domain W3C validator