| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbiebt | Structured version Visualization version Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3557.) (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbiebt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | spsbc 3448 |
. . . . 5
| |
| 3 | 2 | adantr 481 |
. . . 4
|
| 4 | simpl 473 |
. . . . 5
| |
| 5 | biimt 350 |
. . . . . . 7
| |
| 6 | csbeq1a 3542 |
. . . . . . . 8
| |
| 7 | 6 | eqeq1d 2624 |
. . . . . . 7
|
| 8 | 5, 7 | bitr3d 270 |
. . . . . 6
|
| 9 | 8 | adantl 482 |
. . . . 5
|
| 10 | nfv 1843 |
. . . . . 6
| |
| 11 | nfnfc1 2767 |
. . . . . 6
| |
| 12 | 10, 11 | nfan 1828 |
. . . . 5
|
| 13 | nfcsb1v 3549 |
. . . . . . 7
| |
| 14 | 13 | a1i 11 |
. . . . . 6
|
| 15 | simpr 477 |
. . . . . 6
| |
| 16 | 14, 15 | nfeqd 2772 |
. . . . 5
|
| 17 | 4, 9, 12, 16 | sbciedf 3471 |
. . . 4
|
| 18 | 3, 17 | sylibd 229 |
. . 3
|
| 19 | 13 | a1i 11 |
. . . . . . . 8
|
| 20 | id 22 |
. . . . . . . 8
| |
| 21 | 19, 20 | nfeqd 2772 |
. . . . . . 7
|
| 22 | 11, 21 | nfan1 2068 |
. . . . . 6
|
| 23 | 7 | biimprcd 240 |
. . . . . . 7
|
| 24 | 23 | adantl 482 |
. . . . . 6
|
| 25 | 22, 24 | alrimi 2082 |
. . . . 5
|
| 26 | 25 | ex 450 |
. . . 4
|
| 27 | 26 | adantl 482 |
. . 3
|
| 28 | 18, 27 | impbid 202 |
. 2
|
| 29 | 1, 28 | sylan 488 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 |
| This theorem is referenced by: csbiedf 3554 csbieb 3555 csbiegf 3557 |
| Copyright terms: Public domain | W3C validator |