MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   Unicode version

Theorem nfeqd 2772
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeqd  |-  ( ph  ->  F/ x  A  =  B )

Proof of Theorem nfeqd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2616 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1843 . . 3  |-  F/ y
ph
3 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
43nfcrd 2771 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
5 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2771 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
74, 6nfbid 1832 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  <->  y  e.  B ) )
82, 7nfald 2165 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  <->  y  e.  B ) )
91, 8nfxfrd 1780 1  |-  ( ph  ->  F/ x  A  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-cleq 2615  df-nfc 2753
This theorem is referenced by:  nfeld  2773  nfeq  2776  nfned  2895  vtoclgft  3254  vtoclgftOLD  3255  sbcralt  3510  csbiebt  3553  dfnfc2  4454  dfnfc2OLD  4455  eusvnfb  4862  eusv2i  4863  dfid3  5025  iota2df  5875  riotaeqimp  6634  riota5f  6636  oprabid  6677  axrepndlem1  9414  axrepndlem2  9415  axunnd  9418  axpowndlem4  9422  axregndlem2  9425  axinfndlem1  9427  axinfnd  9428  axacndlem4  9432  axacndlem5  9433  axacnd  9434  riotasv2d  34243  nfxnegd  39668
  Copyright terms: Public domain W3C validator