| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbxpgOLD | Structured version Visualization version Unicode version | ||
| Description: Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 23-Aug-2018. Use csbrn 5596 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| csbxpgOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabgOLD 39050 |
. . 3
| |
| 2 | sbcexgOLD 38753 |
. . . . 5
| |
| 3 | sbcexgOLD 38753 |
. . . . . . 7
| |
| 4 | sbcangOLD 38739 |
. . . . . . . . 9
| |
| 5 | sbcg 3503 |
. . . . . . . . . 10
| |
| 6 | sbcangOLD 38739 |
. . . . . . . . . . 11
| |
| 7 | sbcel2gOLD 38755 |
. . . . . . . . . . . 12
| |
| 8 | sbcel2gOLD 38755 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | anbi12d 747 |
. . . . . . . . . . 11
|
| 10 | 6, 9 | bitrd 268 |
. . . . . . . . . 10
|
| 11 | 5, 10 | anbi12d 747 |
. . . . . . . . 9
|
| 12 | 4, 11 | bitrd 268 |
. . . . . . . 8
|
| 13 | 12 | exbidv 1850 |
. . . . . . 7
|
| 14 | 3, 13 | bitrd 268 |
. . . . . 6
|
| 15 | 14 | exbidv 1850 |
. . . . 5
|
| 16 | 2, 15 | bitrd 268 |
. . . 4
|
| 17 | 16 | abbidv 2741 |
. . 3
|
| 18 | 1, 17 | eqtrd 2656 |
. 2
|
| 19 | df-xp 5120 |
. . . 4
| |
| 20 | df-opab 4713 |
. . . 4
| |
| 21 | 19, 20 | eqtri 2644 |
. . 3
|
| 22 | 21 | csbeq2i 3993 |
. 2
|
| 23 | df-xp 5120 |
. . 3
| |
| 24 | df-opab 4713 |
. . 3
| |
| 25 | 23, 24 | eqtri 2644 |
. 2
|
| 26 | 18, 22, 25 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: csbresgOLD 39055 csbresgVD 39131 |
| Copyright terms: Public domain | W3C validator |