MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbrn Structured version   Visualization version   Unicode version

Theorem csbrn 5596
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrn  |-  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B

Proof of Theorem csbrn
StepHypRef Expression
1 csbima12 5483 . . 3  |-  [_ A  /  x ]_ ( B
" _V )  =  ( [_ A  /  x ]_ B " [_ A  /  x ]_ _V )
2 csbconstg 3546 . . . . 5  |-  ( A  e.  _V  ->  [_ A  /  x ]_ _V  =  _V )
32imaeq2d 5466 . . . 4  |-  ( A  e.  _V  ->  ( [_ A  /  x ]_ B " [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ B " _V ) )
4 0ima 5482 . . . . . 6  |-  ( (/) " _V )  =  (/)
54eqcomi 2631 . . . . 5  |-  (/)  =  (
(/) " _V )
6 csbprc 3980 . . . . . . 7  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
76imaeq1d 5465 . . . . . 6  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B " [_ A  /  x ]_ _V )  =  ( (/) " [_ A  /  x ]_ _V )
)
8 0ima 5482 . . . . . 6  |-  ( (/) "
[_ A  /  x ]_ _V )  =  (/)
97, 8syl6eq 2672 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B " [_ A  /  x ]_ _V )  =  (/) )
106imaeq1d 5465 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B " _V )  =  ( (/) " _V ) )
115, 9, 103eqtr4a 2682 . . . 4  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B " [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ B " _V ) )
123, 11pm2.61i 176 . . 3  |-  ( [_ A  /  x ]_ B "
[_ A  /  x ]_ _V )  =  (
[_ A  /  x ]_ B " _V )
131, 12eqtri 2644 . 2  |-  [_ A  /  x ]_ ( B
" _V )  =  ( [_ A  /  x ]_ B " _V )
14 dfrn4 5595 . . 3  |-  ran  B  =  ( B " _V )
1514csbeq2i 3993 . 2  |-  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ ( B " _V )
16 dfrn4 5595 . 2  |-  ran  [_ A  /  x ]_ B  =  ( [_ A  /  x ]_ B " _V )
1713, 15, 163eqtr4i 2654 1  |-  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   (/)c0 3915   ran crn 5115   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  sbcfg  6043
  Copyright terms: Public domain W3C validator