| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbfv12gALTOLD | Structured version Visualization version Unicode version | ||
| Description: Move class substitution in and out of a function value. The proof is derived from the virtual deduction proof csbfv12gALTVD 39135. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 20-Aug-2018. Use csbfv12 6231 instead. (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| csbfv12gALTOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbuni 4466 |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | csbab 4008 |
. . . . . 6
| |
| 4 | 3 | a1i 11 |
. . . . 5
|
| 5 | sbceqg 3984 |
. . . . . . 7
| |
| 6 | csbima12 5483 |
. . . . . . . . . 10
| |
| 7 | 6 | a1i 11 |
. . . . . . . . 9
|
| 8 | csbsng 4243 |
. . . . . . . . . 10
| |
| 9 | 8 | imaeq2d 5466 |
. . . . . . . . 9
|
| 10 | 7, 9 | eqtrd 2656 |
. . . . . . . 8
|
| 11 | csbconstg 3546 |
. . . . . . . 8
| |
| 12 | 10, 11 | eqeq12d 2637 |
. . . . . . 7
|
| 13 | 5, 12 | bitrd 268 |
. . . . . 6
|
| 14 | 13 | abbidv 2741 |
. . . . 5
|
| 15 | 4, 14 | eqtrd 2656 |
. . . 4
|
| 16 | 15 | unieqd 4446 |
. . 3
|
| 17 | 2, 16 | eqtrd 2656 |
. 2
|
| 18 | dffv4 6188 |
. . 3
| |
| 19 | 18 | csbeq2i 3993 |
. 2
|
| 20 | dffv4 6188 |
. 2
| |
| 21 | 17, 19, 20 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |