MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspcvg Structured version   Visualization version   Unicode version

Theorem cuspcvg 22105
Description: In a complete uniform space, any Cauchy filter  C has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
cuspcvg.1  |-  B  =  ( Base `  W
)
cuspcvg.2  |-  J  =  ( TopOpen `  W )
Assertion
Ref Expression
cuspcvg  |-  ( ( W  e. CUnifSp  /\  C  e.  (CauFilu `  (UnifSt `  W
) )  /\  C  e.  ( Fil `  B
) )  ->  ( J  fLim  C )  =/=  (/) )

Proof of Theorem cuspcvg
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( c  =  C  ->  (
c  e.  (CauFilu `  (UnifSt `  W ) )  <->  C  e.  (CauFilu `  (UnifSt `  W )
) ) )
2 cuspcvg.2 . . . . . . . . 9  |-  J  =  ( TopOpen `  W )
32eqcomi 2631 . . . . . . . 8  |-  ( TopOpen `  W )  =  J
43a1i 11 . . . . . . 7  |-  ( c  =  C  ->  ( TopOpen
`  W )  =  J )
5 id 22 . . . . . . 7  |-  ( c  =  C  ->  c  =  C )
64, 5oveq12d 6668 . . . . . 6  |-  ( c  =  C  ->  (
( TopOpen `  W )  fLim  c )  =  ( J  fLim  C )
)
76neeq1d 2853 . . . . 5  |-  ( c  =  C  ->  (
( ( TopOpen `  W
)  fLim  c )  =/=  (/)  <->  ( J  fLim  C )  =/=  (/) ) )
81, 7imbi12d 334 . . . 4  |-  ( c  =  C  ->  (
( c  e.  (CauFilu `  (UnifSt `  W )
)  ->  ( ( TopOpen
`  W )  fLim  c )  =/=  (/) )  <->  ( C  e.  (CauFilu `  (UnifSt `  W
) )  ->  ( J  fLim  C )  =/=  (/) ) ) )
9 iscusp 22103 . . . . . 6  |-  ( W  e. CUnifSp 
<->  ( W  e. UnifSp  /\  A. c  e.  ( Fil `  ( Base `  W
) ) ( c  e.  (CauFilu `  (UnifSt `  W
) )  ->  (
( TopOpen `  W )  fLim  c )  =/=  (/) ) ) )
109simprbi 480 . . . . 5  |-  ( W  e. CUnifSp  ->  A. c  e.  ( Fil `  ( Base `  W ) ) ( c  e.  (CauFilu `  (UnifSt `  W ) )  -> 
( ( TopOpen `  W
)  fLim  c )  =/=  (/) ) )
1110adantr 481 . . . 4  |-  ( ( W  e. CUnifSp  /\  C  e.  ( Fil `  B
) )  ->  A. c  e.  ( Fil `  ( Base `  W ) ) ( c  e.  (CauFilu `  (UnifSt `  W )
)  ->  ( ( TopOpen
`  W )  fLim  c )  =/=  (/) ) )
12 simpr 477 . . . . 5  |-  ( ( W  e. CUnifSp  /\  C  e.  ( Fil `  B
) )  ->  C  e.  ( Fil `  B
) )
13 cuspcvg.1 . . . . . 6  |-  B  =  ( Base `  W
)
1413fveq2i 6194 . . . . 5  |-  ( Fil `  B )  =  ( Fil `  ( Base `  W ) )
1512, 14syl6eleq 2711 . . . 4  |-  ( ( W  e. CUnifSp  /\  C  e.  ( Fil `  B
) )  ->  C  e.  ( Fil `  ( Base `  W ) ) )
168, 11, 15rspcdva 3316 . . 3  |-  ( ( W  e. CUnifSp  /\  C  e.  ( Fil `  B
) )  ->  ( C  e.  (CauFilu `  (UnifSt `  W ) )  -> 
( J  fLim  C
)  =/=  (/) ) )
17163impia 1261 . 2  |-  ( ( W  e. CUnifSp  /\  C  e.  ( Fil `  B
)  /\  C  e.  (CauFilu `  (UnifSt `  W )
) )  ->  ( J  fLim  C )  =/=  (/) )
18173com23 1271 1  |-  ( ( W  e. CUnifSp  /\  C  e.  (CauFilu `  (UnifSt `  W
) )  /\  C  e.  ( Fil `  B
) )  ->  ( J  fLim  C )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   TopOpenctopn 16082   Filcfil 21649    fLim cflim 21738  UnifStcuss 22057  UnifSpcusp 22058  CauFiluccfilu 22090  CUnifSpccusp 22101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-cusp 22102
This theorem is referenced by:  cnextucn  22107
  Copyright terms: Public domain W3C validator