| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cuspcvg | Structured version Visualization version Unicode version | ||
| Description: In a complete uniform
space, any Cauchy filter |
| Ref | Expression |
|---|---|
| cuspcvg.1 |
|
| cuspcvg.2 |
|
| Ref | Expression |
|---|---|
| cuspcvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . 5
| |
| 2 | cuspcvg.2 |
. . . . . . . . 9
| |
| 3 | 2 | eqcomi 2631 |
. . . . . . . 8
|
| 4 | 3 | a1i 11 |
. . . . . . 7
|
| 5 | id 22 |
. . . . . . 7
| |
| 6 | 4, 5 | oveq12d 6668 |
. . . . . 6
|
| 7 | 6 | neeq1d 2853 |
. . . . 5
|
| 8 | 1, 7 | imbi12d 334 |
. . . 4
|
| 9 | iscusp 22103 |
. . . . . 6
| |
| 10 | 9 | simprbi 480 |
. . . . 5
|
| 11 | 10 | adantr 481 |
. . . 4
|
| 12 | simpr 477 |
. . . . 5
| |
| 13 | cuspcvg.1 |
. . . . . 6
| |
| 14 | 13 | fveq2i 6194 |
. . . . 5
|
| 15 | 12, 14 | syl6eleq 2711 |
. . . 4
|
| 16 | 8, 11, 15 | rspcdva 3316 |
. . 3
|
| 17 | 16 | 3impia 1261 |
. 2
|
| 18 | 17 | 3com23 1271 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-cusp 22102 |
| This theorem is referenced by: cnextucn 22107 |
| Copyright terms: Public domain | W3C validator |