| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cfil | Structured version Visualization version Unicode version | ||
| Description: Define the set of Cauchy
filters on a metric space. A Cauchy filter is
a filter on the set such that for every |
| Ref | Expression |
|---|---|
| df-cfil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccfil 23050 |
. 2
| |
| 2 | vd |
. . 3
| |
| 3 | cxmt 19731 |
. . . . 5
| |
| 4 | 3 | crn 5115 |
. . . 4
|
| 5 | 4 | cuni 4436 |
. . 3
|
| 6 | 2 | cv 1482 |
. . . . . . . 8
|
| 7 | vy |
. . . . . . . . . 10
| |
| 8 | 7 | cv 1482 |
. . . . . . . . 9
|
| 9 | 8, 8 | cxp 5112 |
. . . . . . . 8
|
| 10 | 6, 9 | cima 5117 |
. . . . . . 7
|
| 11 | cc0 9936 |
. . . . . . . 8
| |
| 12 | vx |
. . . . . . . . 9
| |
| 13 | 12 | cv 1482 |
. . . . . . . 8
|
| 14 | cico 12177 |
. . . . . . . 8
| |
| 15 | 11, 13, 14 | co 6650 |
. . . . . . 7
|
| 16 | 10, 15 | wss 3574 |
. . . . . 6
|
| 17 | vf |
. . . . . . 7
| |
| 18 | 17 | cv 1482 |
. . . . . 6
|
| 19 | 16, 7, 18 | wrex 2913 |
. . . . 5
|
| 20 | crp 11832 |
. . . . 5
| |
| 21 | 19, 12, 20 | wral 2912 |
. . . 4
|
| 22 | 6 | cdm 5114 |
. . . . . 6
|
| 23 | 22 | cdm 5114 |
. . . . 5
|
| 24 | cfil 21649 |
. . . . 5
| |
| 25 | 23, 24 | cfv 5888 |
. . . 4
|
| 26 | 21, 17, 25 | crab 2916 |
. . 3
|
| 27 | 2, 5, 26 | cmpt 4729 |
. 2
|
| 28 | 1, 27 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: cfilfval 23062 cfili 23066 cfilfcls 23072 |
| Copyright terms: Public domain | W3C validator |