MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfval Structured version   Visualization version   Unicode version

Theorem cfilfval 23062
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilfval  |-  ( D  e.  ( *Met `  X )  ->  (CauFil `  D )  =  {
f  e.  ( Fil `  X )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) } )
Distinct variable groups:    x, y,
f, X    D, f, x, y

Proof of Theorem cfilfval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6217 . . . 4  |-  ( *Met `  X ) 
C_  U. ran  *Met
21sseli 3599 . . 3  |-  ( D  e.  ( *Met `  X )  ->  D  e.  U. ran  *Met )
3 dmeq 5324 . . . . . . 7  |-  ( d  =  D  ->  dom  d  =  dom  D )
43dmeqd 5326 . . . . . 6  |-  ( d  =  D  ->  dom  dom  d  =  dom  dom  D )
54fveq2d 6195 . . . . 5  |-  ( d  =  D  ->  ( Fil `  dom  dom  d
)  =  ( Fil `  dom  dom  D )
)
6 imaeq1 5461 . . . . . . . 8  |-  ( d  =  D  ->  (
d " ( y  X.  y ) )  =  ( D "
( y  X.  y
) ) )
76sseq1d 3632 . . . . . . 7  |-  ( d  =  D  ->  (
( d " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
87rexbidv 3052 . . . . . 6  |-  ( d  =  D  ->  ( E. y  e.  f 
( d " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  E. y  e.  f  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
98ralbidv 2986 . . . . 5  |-  ( d  =  D  ->  ( A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
)  <->  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) ) )
105, 9rabeqbidv 3195 . . . 4  |-  ( d  =  D  ->  { f  e.  ( Fil `  dom  dom  d )  |  A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
) }  =  {
f  e.  ( Fil `  dom  dom  D )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) } )
11 df-cfil 23053 . . . 4  |- CauFil  =  ( d  e.  U. ran  *Met  |->  { f  e.  ( Fil `  dom  dom  d )  |  A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
) } )
12 fvex 6201 . . . . 5  |-  ( Fil `  dom  dom  D )  e.  _V
1312rabex 4813 . . . 4  |-  { f  e.  ( Fil `  dom  dom 
D )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) }  e.  _V
1410, 11, 13fvmpt 6282 . . 3  |-  ( D  e.  U. ran  *Met  ->  (CauFil `  D )  =  { f  e.  ( Fil `  dom  dom  D )  |  A. x  e.  RR+  E. y  e.  f  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) } )
152, 14syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  (CauFil `  D )  =  {
f  e.  ( Fil `  dom  dom  D )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) } )
16 xmetdmdm 22140 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )
1716fveq2d 6195 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( Fil `  X )  =  ( Fil `  dom  dom 
D ) )
18 rabeq 3192 . . 3  |-  ( ( Fil `  X )  =  ( Fil `  dom  dom 
D )  ->  { f  e.  ( Fil `  X
)  |  A. x  e.  RR+  E. y  e.  f  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) }  =  { f  e.  ( Fil `  dom  dom 
D )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) } )
1917, 18syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  { f  e.  ( Fil `  X
)  |  A. x  e.  RR+  E. y  e.  f  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) }  =  { f  e.  ( Fil `  dom  dom 
D )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) } )
2015, 19eqtr4d 2659 1  |-  ( D  e.  ( *Met `  X )  ->  (CauFil `  D )  =  {
f  e.  ( Fil `  X )  |  A. x  e.  RR+  E. y  e.  f  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR+crp 11832   [,)cico 12177   *Metcxmt 19731   Filcfil 21649  CauFilccfil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-cfil 23053
This theorem is referenced by:  iscfil  23063
  Copyright terms: Public domain W3C validator