| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-div | Structured version Visualization version Unicode version | ||
| Description: Define division. Theorem divmuli 10779 relates it to multiplication, and divcli 10767 and redivcli 10792 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 10687 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-div |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdiv 10684 |
. 2
| |
| 2 | vx |
. . 3
| |
| 3 | vy |
. . 3
| |
| 4 | cc 9934 |
. . 3
| |
| 5 | cc0 9936 |
. . . . 5
| |
| 6 | 5 | csn 4177 |
. . . 4
|
| 7 | 4, 6 | cdif 3571 |
. . 3
|
| 8 | 3 | cv 1482 |
. . . . . 6
|
| 9 | vz |
. . . . . . 7
| |
| 10 | 9 | cv 1482 |
. . . . . 6
|
| 11 | cmul 9941 |
. . . . . 6
| |
| 12 | 8, 10, 11 | co 6650 |
. . . . 5
|
| 13 | 2 | cv 1482 |
. . . . 5
|
| 14 | 12, 13 | wceq 1483 |
. . . 4
|
| 15 | 14, 9, 4 | crio 6610 |
. . 3
|
| 16 | 2, 3, 4, 7, 15 | cmpt2 6652 |
. 2
|
| 17 | 1, 16 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: 1div0 10686 divval 10687 elq 11790 cnflddiv 19776 divcn 22671 1div0apr 27324 |
| Copyright terms: Public domain | W3C validator |