MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divval Structured version   Visualization version   Unicode version

Theorem divval 10687
Description: Value of division: if  A and  B are complex numbers with  B nonzero, then  ( A  /  B
) is the (unique) complex number such that  ( B  x.  x )  =  A. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divval  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem divval
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4317 . . 3  |-  ( B  e.  ( CC  \  { 0 } )  <-> 
( B  e.  CC  /\  B  =/=  0 ) )
2 eqeq2 2633 . . . . 5  |-  ( z  =  A  ->  (
( y  x.  x
)  =  z  <->  ( y  x.  x )  =  A ) )
32riotabidv 6613 . . . 4  |-  ( z  =  A  ->  ( iota_ x  e.  CC  (
y  x.  x )  =  z )  =  ( iota_ x  e.  CC  ( y  x.  x
)  =  A ) )
4 oveq1 6657 . . . . . 6  |-  ( y  =  B  ->  (
y  x.  x )  =  ( B  x.  x ) )
54eqeq1d 2624 . . . . 5  |-  ( y  =  B  ->  (
( y  x.  x
)  =  A  <->  ( B  x.  x )  =  A ) )
65riotabidv 6613 . . . 4  |-  ( y  =  B  ->  ( iota_ x  e.  CC  (
y  x.  x )  =  A )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
7 df-div 10685 . . . 4  |-  /  =  ( z  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ x  e.  CC  ( y  x.  x )  =  z ) )
8 riotaex 6615 . . . 4  |-  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  _V
93, 6, 7, 8ovmpt2 6796 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ( CC  \  { 0 } ) )  ->  ( A  /  B )  =  (
iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
101, 9sylan2br 493 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  ->  ( A  /  B )  =  (
iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
11103impb 1260 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   iota_crio 6610  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-div 10685
This theorem is referenced by:  divmul  10688  divcl  10691  cnflddiv  19776  divcn  22671  rexdiv  29634
  Copyright terms: Public domain W3C validator