| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version Unicode version | ||
| Description: Define the zero vector of
Hilbert space. Note that |
| Ref | Expression |
|---|---|
| df-h0v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 27781 |
. 2
| |
| 2 | cva 27777 |
. . . . 5
| |
| 3 | csm 27778 |
. . . . 5
| |
| 4 | 2, 3 | cop 4183 |
. . . 4
|
| 5 | cno 27780 |
. . . 4
| |
| 6 | 4, 5 | cop 4183 |
. . 3
|
| 7 | cn0v 27443 |
. . 3
| |
| 8 | 6, 7 | cfv 5888 |
. 2
|
| 9 | 1, 8 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: axhv0cl-zf 27842 axhvaddid-zf 27843 axhvmul0-zf 27849 axhis4-zf 27854 |
| Copyright terms: Public domain | W3C validator |