![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-h0v | Structured version Visualization version Unicode version |
Description: Define the zero vector of
Hilbert space. Note that ![]() |
Ref | Expression |
---|---|
df-h0v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 27781 |
. 2
![]() ![]() | |
2 | cva 27777 |
. . . . 5
![]() ![]() | |
3 | csm 27778 |
. . . . 5
![]() ![]() | |
4 | 2, 3 | cop 4183 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
5 | cno 27780 |
. . . 4
![]() ![]() | |
6 | 4, 5 | cop 4183 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | cn0v 27443 |
. . 3
![]() ![]() | |
8 | 6, 7 | cfv 5888 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 8 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: axhv0cl-zf 27842 axhvaddid-zf 27843 axhvmul0-zf 27849 axhis4-zf 27854 |
Copyright terms: Public domain | W3C validator |