| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version Unicode version | ||
| Description: Define base set of
Hilbert space, for use if we want to develop Hilbert
space independently from the axioms (see comments in ax-hilex 27856). Note
that |
| Ref | Expression |
|---|---|
| df-hba |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chil 27776 |
. 2
| |
| 2 | cva 27777 |
. . . . 5
| |
| 3 | csm 27778 |
. . . . 5
| |
| 4 | 2, 3 | cop 4183 |
. . . 4
|
| 5 | cno 27780 |
. . . 4
| |
| 6 | 4, 5 | cop 4183 |
. . 3
|
| 7 | cba 27441 |
. . 3
| |
| 8 | 6, 7 | cfv 5888 |
. 2
|
| 9 | 1, 8 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: axhilex-zf 27838 axhfvadd-zf 27839 axhvcom-zf 27840 axhvass-zf 27841 axhv0cl-zf 27842 axhvaddid-zf 27843 axhfvmul-zf 27844 axhvmulid-zf 27845 axhvmulass-zf 27846 axhvdistr1-zf 27847 axhvdistr2-zf 27848 axhvmul0-zf 27849 axhfi-zf 27850 axhis1-zf 27851 axhis2-zf 27852 axhis3-zf 27853 axhis4-zf 27854 axhcompl-zf 27855 bcsiHIL 28037 hlimadd 28050 hhssabloilem 28118 pjhthlem2 28251 nmopsetretHIL 28723 nmopub2tHIL 28769 hmopbdoptHIL 28847 |
| Copyright terms: Public domain | W3C validator |