![]() |
Metamath
Proof Explorer Theorem List (p. 279 of 426) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | chio 27801 | Extend class notation with Hilbert space identity operator. |
![]() ![]() | ||
Syntax | cnop 27802 | Extend class notation with the operator norm function. |
![]() ![]() | ||
Syntax | ccop 27803 | Extend class notation with set of continuous Hilbert space operators. |
![]() ![]() | ||
Syntax | clo 27804 | Extend class notation with set of linear Hilbert space operators. |
![]() ![]() | ||
Syntax | cbo 27805 | Extend class notation with set of bounded linear operators. |
![]() ![]() | ||
Syntax | cuo 27806 | Extend class notation with set of unitary Hilbert space operators. |
![]() ![]() | ||
Syntax | cho 27807 | Extend class notation with set of Hermitian Hilbert space operators. |
![]() ![]() | ||
Syntax | cnmf 27808 | Extend class notation with the functional norm function. |
![]() ![]() | ||
Syntax | cnl 27809 | Extend class notation with the functional nullspace function. |
![]() ![]() | ||
Syntax | ccnfn 27810 | Extend class notation with set of continuous Hilbert space functionals. |
![]() ![]() | ||
Syntax | clf 27811 | Extend class notation with set of linear Hilbert space functionals. |
![]() ![]() | ||
Syntax | cado 27812 | Extend class notation with Hilbert space adjoint function. |
![]() ![]() | ||
Syntax | cbr 27813 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
![]() ![]() | ||
Syntax | ck 27814 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
![]() ![]() | ||
Syntax | cleo 27815 | Extend class notation with positive operator ordering. |
![]() ![]() | ||
Syntax | cei 27816 | Extend class notation with Hilbert space eigenvector function. |
![]() ![]() | ||
Syntax | cel 27817 | Extend class notation with Hilbert space eigenvalue function. |
![]() ![]() | ||
Syntax | cspc 27818 | Extend class notation with the spectrum of an operator. |
![]() ![]() | ||
Syntax | cst 27819 | Extend class notation with set of states on a Hilbert lattice. |
![]() ![]() | ||
Syntax | chst 27820 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
![]() ![]() | ||
Syntax | ccv 27821 | Extend class notation with the covers relation on a Hilbert lattice. |
![]() ![]() | ||
Syntax | cat 27822 | Extend class notation with set of atoms on a Hilbert lattice. |
![]() | ||
Syntax | cmd 27823 | Extend class notation with the modular pair relation on a Hilbert lattice. |
![]() ![]() | ||
Syntax | cdmd 27824 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
![]() ![]() | ||
Definition | df-hnorm 27825 |
Define the function for the norm of a vector of Hilbert space. See
normval 27981 for its value and normcl 27982 for its closure. Theorems
norm-i-i 27990, norm-ii-i 27994, and norm-iii-i 27996 show it has the expected
properties of a norm. In the literature, the norm of ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-hba 27826 |
Define base set of Hilbert space, for use if we want to develop Hilbert
space independently from the axioms (see comments in ax-hilex 27856). Note
that ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-h0v 27827 |
Define the zero vector of Hilbert space. Note that ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-hvsub 27828* | Define vector subtraction. See hvsubvali 27877 for its value and hvsubcli 27878 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-hlim 27829* |
Define the limit relation for Hilbert space. See hlimi 28045 for its
relational expression. Note that ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-hcau 27830* |
Define the set of Cauchy sequences on a Hilbert space. See hcau 28041
for
its membership relation. Note that ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hva 27831 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hsm 27832 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hnm 27833 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hvs 27834 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hmetdval 27835 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hcau 27836 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | h2hlm 27837 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Before introducing the 18 axioms for Hilbert space, we first prove them
as the conclusions of theorems axhilex-zf 27838 through axhcompl-zf 27855, using ZFC
set theory only. These show that if we are given a known, fixed Hilbert
space | ||
Theorem | axhilex-zf 27838 | Derive axiom ax-hilex 27856 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhfvadd-zf 27839 | Derive axiom ax-hfvadd 27857 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvcom-zf 27840 | Derive axiom ax-hvcom 27858 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvass-zf 27841 | Derive axiom ax-hvass 27859 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhv0cl-zf 27842 | Derive axiom ax-hv0cl 27860 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvaddid-zf 27843 | Derive axiom ax-hvaddid 27861 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhfvmul-zf 27844 | Derive axiom ax-hfvmul 27862 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvmulid-zf 27845 | Derive axiom ax-hvmulid 27863 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvmulass-zf 27846 | Derive axiom ax-hvmulass 27864 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvdistr1-zf 27847 | Derive axiom ax-hvdistr1 27865 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvdistr2-zf 27848 | Derive axiom ax-hvdistr2 27866 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhvmul0-zf 27849 | Derive axiom ax-hvmul0 27867 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhfi-zf 27850 | Derive axiom ax-hfi 27936 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhis1-zf 27851 | Derive axiom ax-his1 27939 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhis2-zf 27852 | Derive axiom ax-his2 27940 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhis3-zf 27853 | Derive axiom ax-his3 27941 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhis4-zf 27854 | Derive axiom ax-his4 27942 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axhcompl-zf 27855* | Derive axiom ax-hcompl 28059 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 27856, ax-hfvadd 27857, ax-hvcom 27858, ax-hvass 27859, ax-hv0cl 27860, ax-hvaddid 27861, ax-hfvmul 27862, ax-hvmulid 27863, ax-hvmulass 27864, ax-hvdistr1 27865, ax-hvdistr2 27866, ax-hvmul0 27867, ax-hfi 27936, ax-his1 27939, ax-his2 27940, ax-his3 27941, ax-his4 27942, and ax-hcompl 28059.
The axioms specify the properties of 5 primitive symbols,
If we can prove in ZFC set theory that a class
| ||
Axiom | ax-hilex 27856 |
This is our first axiom for a complex Hilbert space, which is the
foundation for quantum mechanics and quantum field theory. We assume that
there exists a primitive class, ![]() |
![]() ![]() ![]() ![]() | ||
Axiom | ax-hfvadd 27857 |
Vector addition is an operation on ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvcom 27858 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvass 27859 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hv0cl 27860 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() | ||
Axiom | ax-hvaddid 27861 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hfvmul 27862 |
Scalar multiplication is an operation on ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvmulid 27863 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvmulass 27864 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvdistr1 27865 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvdistr2 27866 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-hvmul0 27867 | Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 27883 and hvsubval 27873). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvmulex 27868 | The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() | ||
Theorem | hvaddcl 27869 | Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvmulcl 27870 | Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvmulcli 27871 | Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsubf 27872 | Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsubval 27873 | Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsubcl 27874 | Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvaddcli 27875 | Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvcomi 27876 | Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsubvali 27877 | Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsubcli 27878 | Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ifhvhv0 27879 |
Prove ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvaddid2 27880 | Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvmul0 27881 | Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvmul0or 27882 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsubid 27883 | Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvnegid 27884 | Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hv2neg 27885 | Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvaddid2i 27886 | Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvnegidi 27887 | Addition of negative of a vector to itself. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hv2negi 27888 | Two ways to express the negative of a vector. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvm1neg 27889 | Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvaddsubval 27890 | Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvadd32 27891 | Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvadd12 27892 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvadd4 27893 | Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvsub4 27894 | Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvaddsub12 27895 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvpncan 27896 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvpncan2 27897 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvaddsubass 27898 | Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvpncan3 27899 | Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hvmulcom 27900 | Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |