MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   Unicode version

Definition df-riota 6611
Description: Define restricted description binder. In case there is no unique  x such that  ( x  e.  A  /\  ph ) holds, it evaluates to the empty set. See also comments for df-iota 5851. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
3 cA . . 3  class  A
41, 2, 3crio 6610 . 2  class  ( iota_ x  e.  A  ph )
52cv 1482 . . . . 5  class  x
65, 3wcel 1990 . . . 4  wff  x  e.  A
76, 1wa 384 . . 3  wff  ( x  e.  A  /\  ph )
87, 2cio 5849 . 2  class  ( iota
x ( x  e.  A  /\  ph )
)
94, 8wceq 1483 1  wff  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
Colors of variables: wff setvar class
This definition is referenced by:  riotaeqdv  6612  riotabidv  6613  riotaex  6615  riotav  6616  riotauni  6617  nfriota1  6618  nfriotad  6619  cbvriota  6621  csbriota  6623  riotacl2  6624  riotabidva  6627  riota1  6629  riota2df  6631  snriota  6641  riotaund  6647  ismgmid  17264  q1peqb  23914  adjval  28749
  Copyright terms: Public domain W3C validator