| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriotad | Structured version Visualization version Unicode version | ||
| Description: Deduction version of nfriota 6620. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfriotad.1 |
|
| nfriotad.2 |
|
| nfriotad.3 |
|
| Ref | Expression |
|---|---|
| nfriotad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 6611 |
. 2
| |
| 2 | nfriotad.1 |
. . . . . 6
| |
| 3 | nfnae 2318 |
. . . . . 6
| |
| 4 | 2, 3 | nfan 1828 |
. . . . 5
|
| 5 | nfcvf 2788 |
. . . . . . . 8
| |
| 6 | 5 | adantl 482 |
. . . . . . 7
|
| 7 | nfriotad.3 |
. . . . . . . 8
| |
| 8 | 7 | adantr 481 |
. . . . . . 7
|
| 9 | 6, 8 | nfeld 2773 |
. . . . . 6
|
| 10 | nfriotad.2 |
. . . . . . 7
| |
| 11 | 10 | adantr 481 |
. . . . . 6
|
| 12 | 9, 11 | nfand 1826 |
. . . . 5
|
| 13 | 4, 12 | nfiotad 5854 |
. . . 4
|
| 14 | 13 | ex 450 |
. . 3
|
| 15 | nfiota1 5853 |
. . . 4
| |
| 16 | eqidd 2623 |
. . . . 5
| |
| 17 | 16 | drnfc1 2782 |
. . . 4
|
| 18 | 15, 17 | mpbiri 248 |
. . 3
|
| 19 | 14, 18 | pm2.61d2 172 |
. 2
|
| 20 | 1, 19 | nfcxfrd 2763 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-sn 4178 df-uni 4437 df-iota 5851 df-riota 6611 |
| This theorem is referenced by: nfriota 6620 |
| Copyright terms: Public domain | W3C validator |