| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbriota | Structured version Visualization version Unicode version | ||
| Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| csbriota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3536 |
. . . 4
| |
| 2 | dfsbcq2 3438 |
. . . . 5
| |
| 3 | 2 | riotabidv 6613 |
. . . 4
|
| 4 | 1, 3 | eqeq12d 2637 |
. . 3
|
| 5 | vex 3203 |
. . . 4
| |
| 6 | nfs1v 2437 |
. . . . 5
| |
| 7 | nfcv 2764 |
. . . . 5
| |
| 8 | 6, 7 | nfriota 6620 |
. . . 4
|
| 9 | sbequ12 2111 |
. . . . 5
| |
| 10 | 9 | riotabidv 6613 |
. . . 4
|
| 11 | 5, 8, 10 | csbief 3558 |
. . 3
|
| 12 | 4, 11 | vtoclg 3266 |
. 2
|
| 13 | csbprc 3980 |
. . 3
| |
| 14 | df-riota 6611 |
. . . 4
| |
| 15 | euex 2494 |
. . . . . . 7
| |
| 16 | sbcex 3445 |
. . . . . . . . 9
| |
| 17 | 16 | adantl 482 |
. . . . . . . 8
|
| 18 | 17 | exlimiv 1858 |
. . . . . . 7
|
| 19 | 15, 18 | syl 17 |
. . . . . 6
|
| 20 | 19 | con3i 150 |
. . . . 5
|
| 21 | iotanul 5866 |
. . . . 5
| |
| 22 | 20, 21 | syl 17 |
. . . 4
|
| 23 | 14, 22 | syl5req 2669 |
. . 3
|
| 24 | 13, 23 | eqtrd 2656 |
. 2
|
| 25 | 12, 24 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 df-iota 5851 df-riota 6611 |
| This theorem is referenced by: cdlemkid3N 36221 cdlemkid4 36222 |
| Copyright terms: Public domain | W3C validator |