| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rtrcl | Structured version Visualization version Unicode version | ||
| Description: Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011.) |
| Ref | Expression |
|---|---|
| df-rtrcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crtcl 13725 |
. 2
| |
| 2 | vx |
. . 3
| |
| 3 | cvv 3200 |
. . 3
| |
| 4 | cid 5023 |
. . . . . . . 8
| |
| 5 | 2 | cv 1482 |
. . . . . . . . . 10
|
| 6 | 5 | cdm 5114 |
. . . . . . . . 9
|
| 7 | 5 | crn 5115 |
. . . . . . . . 9
|
| 8 | 6, 7 | cun 3572 |
. . . . . . . 8
|
| 9 | 4, 8 | cres 5116 |
. . . . . . 7
|
| 10 | vz |
. . . . . . . 8
| |
| 11 | 10 | cv 1482 |
. . . . . . 7
|
| 12 | 9, 11 | wss 3574 |
. . . . . 6
|
| 13 | 5, 11 | wss 3574 |
. . . . . 6
|
| 14 | 11, 11 | ccom 5118 |
. . . . . . 7
|
| 15 | 14, 11 | wss 3574 |
. . . . . 6
|
| 16 | 12, 13, 15 | w3a 1037 |
. . . . 5
|
| 17 | 16, 10 | cab 2608 |
. . . 4
|
| 18 | 17 | cint 4475 |
. . 3
|
| 19 | 2, 3, 18 | cmpt 4729 |
. 2
|
| 20 | 1, 19 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: dfrtrcl2 13802 dfrtrcl5 37936 dfrtrcl3 38025 |
| Copyright terms: Public domain | W3C validator |