HomeHome Metamath Proof Explorer
Theorem List (p. 138 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 13701-13800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremwwlktovfo 13701* Lemma 3 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
 |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w `
  0 )  =  P  /\  { ( w `  0 ) ,  ( w `  1
 ) }  e.  X ) }   &    |-  R  =  { n  e.  V  |  { P ,  n }  e.  X }   &    |-  F  =  ( t  e.  D  |->  ( t `  1 ) )   =>    |-  ( P  e.  V  ->  F : D -onto-> R )
 
Theoremwwlktovf1o 13702* Lemma 4 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
 |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w `
  0 )  =  P  /\  { ( w `  0 ) ,  ( w `  1
 ) }  e.  X ) }   &    |-  R  =  { n  e.  V  |  { P ,  n }  e.  X }   &    |-  F  =  ( t  e.  D  |->  ( t `  1 ) )   =>    |-  ( P  e.  V  ->  F : D -1-1-onto-> R )
 
Theoremwrd2f1tovbij 13703* There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
 |-  ( ( V  e.  Y  /\  P  e.  V )  ->  E. f  f : { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w `  0 )  =  P  /\  {
 ( w `  0
 ) ,  ( w `
  1 ) }  e.  X ) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X }
 )
 
Theoremeqwrds3 13704 A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
 |-  ( ( W  e. Word  V 
 /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  ->  ( W  =  <" A B C ">  <->  ( ( # `  W )  =  3 
 /\  ( ( W `
  0 )  =  A  /\  ( W `
  1 )  =  B  /\  ( W `
  2 )  =  C ) ) ) )
 
Theoremwrdl3s3 13705* A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
 |-  ( ( W  e. Word  V 
 /\  ( # `  W )  =  3 )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  W  =  <" a b c "> )
 
Theorems3sndisj 13706* The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
 |-  ( ( A  e.  X  /\  B  e.  Y )  -> Disj  c  e.  Z  { <" A B c "> } )
 
Theorems3iunsndisj 13707* The union of singletons consisting of length 3 strings which have distinct first and third symbols are disjunct. (Contributed by AV, 17-May-2021.)
 |-  ( B  e.  X  -> Disj  a  e.  Y  U_ c  e.  ( Z  \  {
 a } ) { <" a B c "> } )
 
Theoremofccat 13708 Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018.)
 |-  ( ph  ->  E  e. Word  S )   &    |-  ( ph  ->  F  e. Word  S )   &    |-  ( ph  ->  G  e. Word  T )   &    |-  ( ph  ->  H  e. Word  T )   &    |-  ( ph  ->  ( # `  E )  =  ( # `  G ) )   &    |-  ( ph  ->  ( # `  F )  =  ( # `  H ) )   =>    |-  ( ph  ->  (
 ( E ++  F )  oF R ( G ++  H ) )  =  ( ( E  oF R G ) ++  ( F  oF R H ) ) )
 
Theoremofs1 13709 Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
 |-  ( ( A  e.  S  /\  B  e.  T )  ->  ( <" A ">  oF R
 <" B "> )  =  <" ( A R B ) "> )
 
Theoremofs2 13710 Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
 |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  T  /\  D  e.  T )
 )  ->  ( <" A B ">  oF R <" C D "> )  = 
 <" ( A R C ) ( B R D ) "> )
 
5.8  Reflexive and transitive closures of relations

A relation,  R, has the reflexive property if  A R A holds whenever  A is an element which could be related by the the relation, namely elements of its domain and range. Eliminating dummy variables we see that a segment of the identity relation must be a subset of the relation or  (  _I  |`  ( ran  R  u.  dom  R ) )  C_  R. See issref 5509.

A relation,  R, has the transitive property if  A R C holds whenever there exists an intermediate value  B such that both 
A R B and  B R C hold. This can be expressed without dummy variables as  ( R  o.  R )  C_  R. See cotr 5508.

The transitive closure of a relation,  ( t+ `  R ), is the smallest superset of the relation which has the transitive property. Likewise the reflexive-transitive closure,  ( t* `  R ), is the smallest superset which has both the reflexive and transitive properties.

Not to be confused with the transitive closure of a set, trcl 8604, which is a closure relative to a different transitive property, df-tr 4753.

 
5.8.1  The reflexive and transitive properties of relations
 
Theoremcoss12d 13711 Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C 
 C_  D )   =>    |-  ( ph  ->  ( A  o.  C ) 
 C_  ( B  o.  D ) )
 
Theoremtrrelssd 13712 The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019.)
 |-  ( ph  ->  ( R  o.  R )  C_  R )   &    |-  ( ph  ->  S 
 C_  R )   &    |-  ( ph  ->  T  C_  R )   =>    |-  ( ph  ->  ( S  o.  T )  C_  R )
 
Theoremxpcogend 13713 The most interesting case of the composition of two cross products. (Contributed by RP, 24-Dec-2019.)
 |-  ( ph  ->  ( B  i^i  C )  =/=  (/) )   =>    |-  ( ph  ->  (
 ( C  X.  D )  o.  ( A  X.  B ) )  =  ( A  X.  D ) )
 
Theoremxpcoidgend 13714 If two classes are not disjoint, then the composition of their cross-product with itself is idempotent. (Contributed by RP, 24-Dec-2019.)
 |-  ( ph  ->  ( A  i^i  B )  =/=  (/) )   =>    |-  ( ph  ->  (
 ( A  X.  B )  o.  ( A  X.  B ) )  =  ( A  X.  B ) )
 
Theoremcotr2g 13715* Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 13716 for the main application. (Contributed by RP, 22-Mar-2020.)
 |- 
 dom  B  C_  D   &    |-  ( ran  B  i^i  dom  A )  C_  E   &    |-  ran  A  C_  F   =>    |-  (
 ( A  o.  B )  C_  C  <->  A. x  e.  D  A. y  e.  E  A. z  e.  F  (
 ( x B y 
 /\  y A z )  ->  x C z ) )
 
Theoremcotr2 13716* Two ways of saying a relation is transitive. Special instance of cotr2g 13715. (Contributed by RP, 22-Mar-2020.)
 |- 
 dom  R  C_  A   &    |-  ( dom  R  i^i  ran  R )  C_  B   &    |-  ran  R  C_  C   =>    |-  (
 ( R  o.  R )  C_  R  <->  A. x  e.  A  A. y  e.  B  A. z  e.  C  (
 ( x R y 
 /\  y R z )  ->  x R z ) )
 
Theoremcotr3 13717* Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.)
 |-  A  =  dom  R   &    |-  B  =  ( A  i^i  C )   &    |-  C  =  ran  R   =>    |-  (
 ( R  o.  R )  C_  R  <->  A. x  e.  A  A. y  e.  B  A. z  e.  C  (
 ( x R y 
 /\  y R z )  ->  x R z ) )
 
Theoremcoemptyd 13718 Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019.)
 |-  ( ph  ->  ( dom  A  i^i  ran  B )  =  (/) )   =>    |-  ( ph  ->  ( A  o.  B )  =  (/) )
 
Theoremxptrrel 13719 The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
 |-  ( ( A  X.  B )  o.  ( A  X.  B ) ) 
 C_  ( A  X.  B )
 
Theorem0trrel 13720 The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.)
 |-  ( (/)  o.  (/) )  C_  (/)
 
5.8.2  Basic properties of closures
 
Theoremcleq1lem 13721 Equality implies bijection. (Contributed by RP, 9-May-2020.)
 |-  ( A  =  B  ->  ( ( A  C_  C  /\  ph )  <->  ( B  C_  C  /\  ph ) ) )
 
Theoremcleq1 13722* Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020.)
 |-  ( R  =  S  -> 
 |^| { r  |  ( R  C_  r  /\  ph ) }  =  |^| { r  |  ( S 
 C_  r  /\  ph ) } )
 
Theoremclsslem 13723* The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.)
 |-  ( R  C_  S  -> 
 |^| { r  |  ( R  C_  r  /\  ph ) }  C_  |^| { r  |  ( S  C_  r  /\  ph ) } )
 
5.8.3  Definitions and basic properties of transitive closures
 
Syntaxctcl 13724 Extend class notation to include the transitive closure symbol.
 class 
 t+
 
Syntaxcrtcl 13725 Extend class notation with reflexive-transitive closure.
 class 
 t*
 
Definitiondf-trcl 13726* Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011.)
 |-  t+  =  ( x  e.  _V  |->  |^| { z  |  ( x 
 C_  z  /\  (
 z  o.  z ) 
 C_  z ) }
 )
 
Definitiondf-rtrcl 13727* Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011.)
 |-  t*  =  ( x  e.  _V  |->  |^| { z  |  ( (  _I  |`  ( dom  x  u.  ran  x )
 )  C_  z  /\  x  C_  z  /\  (
 z  o.  z ) 
 C_  z ) }
 )
 
Theoremtrcleq1 13728* Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.)
 |-  ( R  =  S  -> 
 |^| { r  |  ( R  C_  r  /\  ( r  o.  r
 )  C_  r ) }  =  |^| { r  |  ( S  C_  r  /\  ( r  o.  r
 )  C_  r ) } )
 
Theoremtrclsslem 13729* The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.)
 |-  ( R  C_  S  -> 
 |^| { r  |  ( R  C_  r  /\  ( r  o.  r
 )  C_  r ) }  C_  |^| { r  |  ( S  C_  r  /\  ( r  o.  r
 )  C_  r ) } )
 
Theoremtrcleq2lem 13730 Equality implies bijection. (Contributed by RP, 5-May-2020.)
 |-  ( A  =  B  ->  ( ( R  C_  A  /\  ( A  o.  A )  C_  A )  <-> 
 ( R  C_  B  /\  ( B  o.  B )  C_  B ) ) )
 
Theoremcvbtrcl 13731* Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020.)
 |- 
 { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x ) }  =  { y  |  ( R  C_  y  /\  ( y  o.  y
 )  C_  y ) }
 
Theoremtrcleq12lem 13732 Equality implies bijection. (Contributed by RP, 9-May-2020.)
 |-  ( ( R  =  S  /\  A  =  B )  ->  ( ( R 
 C_  A  /\  ( A  o.  A )  C_  A )  <->  ( S  C_  B  /\  ( B  o.  B )  C_  B ) ) )
 
Theoremtrclexlem 13733 Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.)
 |-  ( R  e.  V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  _V )
 
Theoremtrclublem 13734* If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.)
 |-  ( R  e.  V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x ) }
 )
 
Theoremtrclubi 13735* The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
 |- 
 Rel  R   &    |-  R  e.  _V   =>    |-  |^| { s  |  ( R  C_  s  /\  ( s  o.  s
 )  C_  s ) }  C_  ( dom  R  X.  ran  R )
 
TheoremtrclubiOLD 13736* Obsolete version of trclubi 13735 as of 26-Mar-2021. (Contributed by RP, 2-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 Rel  R   &    |-  R  e.  V   =>    |-  |^| { s  |  ( R  C_  s  /\  ( s  o.  s
 )  C_  s ) }  C_  ( dom  R  X.  ran  R )
 
Theoremtrclubgi 13737* The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
 |-  R  e.  _V   =>    |-  |^| { s  |  ( R  C_  s  /\  ( s  o.  s
 )  C_  s ) }  C_  ( R  u.  ( dom  R  X.  ran  R ) )
 
TheoremtrclubgiOLD 13738* Obsolete version of trclubgi 13737 as of 26-Mar-2021. (Contributed by RP, 3-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  R  e.  V   =>    |-  |^| { s  |  ( R  C_  s  /\  ( s  o.  s
 )  C_  s ) }  C_  ( R  u.  ( dom  R  X.  ran  R ) )
 
Theoremtrclub 13739* The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020.)
 |-  ( ( R  e.  V  /\  Rel  R )  -> 
 |^| { r  |  ( R  C_  r  /\  ( r  o.  r
 )  C_  r ) }  C_  ( dom  R  X.  ran  R ) )
 
Theoremtrclubg 13740* The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020.)
 |-  ( R  e.  V  -> 
 |^| { r  |  ( R  C_  r  /\  ( r  o.  r
 )  C_  r ) }  C_  ( R  u.  ( dom  R  X.  ran  R ) ) )
 
Theoremtrclfv 13741* The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.)
 |-  ( R  e.  V  ->  ( t+ `  R )  =  |^| { x  |  ( R 
 C_  x  /\  ( x  o.  x )  C_  x ) } )
 
Theorembrintclab 13742* Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.)
 |-  ( A |^| { x  |  ph } B  <->  A. x ( ph  -> 
 <. A ,  B >.  e.  x ) )
 
Theorembrtrclfv 13743* Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.)
 |-  ( R  e.  V  ->  ( A ( t+ `  R ) B  <->  A. r ( ( R  C_  r  /\  ( r  o.  r
 )  C_  r )  ->  A r B ) ) )
 
Theorembrcnvtrclfv 13744* Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020.)
 |-  ( ( R  e.  U  /\  A  e.  V  /\  B  e.  W ) 
 ->  ( A `' (
 t+ `  R ) B  <->  A. r ( ( R  C_  r  /\  ( r  o.  r
 )  C_  r )  ->  B r A ) ) )
 
Theorembrtrclfvcnv 13745* Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020.)
 |-  ( R  e.  V  ->  ( A ( t+ `  `' R ) B  <->  A. r ( ( `' R  C_  r  /\  ( r  o.  r
 )  C_  r )  ->  A r B ) ) )
 
Theorembrcnvtrclfvcnv 13746* Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020.)
 |-  ( ( R  e.  U  /\  A  e.  V  /\  B  e.  W ) 
 ->  ( A `' (
 t+ `  `' R ) B  <->  A. r ( ( `' R  C_  r  /\  ( r  o.  r
 )  C_  r )  ->  B r A ) ) )
 
Theoremtrclfvss 13747 The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.)
 |-  ( ( R  e.  V  /\  S  e.  W  /\  R  C_  S )  ->  ( t+ `  R )  C_  ( t+ `  S ) )
 
Theoremtrclfvub 13748 The transitive closure of a relation has an upper bound. (Contributed by RP, 28-Apr-2020.)
 |-  ( R  e.  V  ->  ( t+ `  R )  C_  ( R  u.  ( dom  R  X.  ran  R ) ) )
 
Theoremtrclfvlb 13749 The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.)
 |-  ( R  e.  V  ->  R  C_  ( t+ `  R )
 )
 
Theoremtrclfvcotr 13750 The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.)
 |-  ( R  e.  V  ->  ( ( t+ `
  R )  o.  ( t+ `  R ) )  C_  ( t+ `  R ) )
 
Theoremtrclfvlb2 13751 The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.)
 |-  ( R  e.  V  ->  ( R  o.  R )  C_  ( t+ `
  R ) )
 
Theoremtrclfvlb3 13752 The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.)
 |-  ( R  e.  V  ->  ( R  u.  ( R  o.  R ) ) 
 C_  ( t+ `
  R ) )
 
Theoremcotrtrclfv 13753 The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.)
 |-  ( ( R  e.  V  /\  ( R  o.  R )  C_  R ) 
 ->  ( t+ `  R )  =  R )
 
Theoremtrclidm 13754 The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020.)
 |-  ( R  e.  V  ->  ( t+ `  ( t+ `  R ) )  =  ( t+ `  R ) )
 
Theoremtrclun 13755 Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( t+ `
  ( R  u.  S ) )  =  ( t+ `  ( ( t+ `
  R )  u.  ( t+ `  S ) ) ) )
 
Theoremtrclfvg 13756 The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020.)
 |-  ( R  C_  (
 t+ `  R )  \/  ( t+ `
  R )  =  (/) )
 
Theoremtrclfvcotrg 13757 The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.)
 |-  ( ( t+ `
  R )  o.  ( t+ `  R ) )  C_  ( t+ `  R )
 
Theoremreltrclfv 13758 The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.)
 |-  ( ( R  e.  V  /\  Rel  R )  ->  Rel  ( t+ `
  R ) )
 
Theoremdmtrclfv 13759 The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.)
 |-  ( R  e.  V  ->  dom  ( t+ `
  R )  = 
 dom  R )
 
5.8.4  Exponentiation of relations
 
Syntaxcrelexp 13760 Extend class notation to include relation exponentiation.
 class ^r
 
Definitiondf-relexp 13761* Definition of repeated composition of a relation with itself, aka relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 22-May-2020.)
 |- ^r  =  (
 r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r )
 ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  r ) ) `  n ) ) )
 
Theoremrelexp0g 13762 A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
 |-  ( R  e.  V  ->  ( R ^r 
 0 )  =  (  _I  |`  ( dom  R  u.  ran  R )
 ) )
 
Theoremrelexp0 13763 A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
 |-  ( ( R  e.  V  /\  Rel  R )  ->  ( R ^r 
 0 )  =  (  _I  |`  U. U. R ) )
 
Theoremrelexp0d 13764 A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( R ^r  0 )  =  (  _I  |`  U. U. R ) )
 
Theoremrelexpsucnnr 13765 A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020.)
 |-  ( ( R  e.  V  /\  N  e.  NN )  ->  ( R ^r  ( N  +  1 ) )  =  ( ( R ^r  N )  o.  R ) )
 
Theoremrelexp1g 13766 A relation composed once is itself. (Contributed by RP, 22-May-2020.)
 |-  ( R  e.  V  ->  ( R ^r 
 1 )  =  R )
 
Theoremdfid5 13767 Identity relation is equal to relational exponentiation to the first power. (Contributed by RP, 9-Jun-2020.)
 |- 
 _I  =  ( x  e.  _V  |->  ( x ^r  1 ) )
 
Theoremdfid6 13768* Identity relation expressed as indexed union of relational powers. (Contributed by RP, 9-Jun-2020.)
 |- 
 _I  =  ( x  e.  _V  |->  U_ n  e.  { 1 }  ( x ^r  n ) )
 
Theoremrelexpsucr 13769 A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.)
 |-  ( ( R  e.  V  /\  Rel  R  /\  N  e.  NN0 )  ->  ( R ^r 
 ( N  +  1 ) )  =  ( ( R ^r  N )  o.  R ) )
 
Theoremrelexpsucrd 13770 A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  ( R ^r  ( N  +  1 ) )  =  ( ( R ^r  N )  o.  R ) ) )
 
Theoremrelexp1d 13771 A relation composed once is itself. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( R ^r  1 )  =  R )
 
Theoremrelexpsucnnl 13772 A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
 |-  ( ( R  e.  V  /\  N  e.  NN )  ->  ( R ^r  ( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) )
 
Theoremrelexpsucl 13773 A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
 |-  ( ( R  e.  V  /\  Rel  R  /\  N  e.  NN0 )  ->  ( R ^r 
 ( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) )
 
Theoremrelexpsucld 13774 A reduction for relation exponentiation to the left. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  ( R ^r  ( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) ) )
 
Theoremrelexpcnv 13775 Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V ) 
 ->  `' ( R ^r  N )  =  ( `' R ^r  N ) )
 
Theoremrelexpcnvd 13776 Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) )
 
Theoremrelexp0rel 13777 The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.)
 |-  ( R  e.  V  ->  Rel  ( R ^r  0 ) )
 
Theoremrelexprelg 13778 The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V  /\  ( N  =  1  ->  Rel  R ) ) 
 ->  Rel  ( R ^r  N ) )
 
Theoremrelexprel 13779 The exponentiation of a relation is a relation. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V  /\  Rel 
 R )  ->  Rel  ( R ^r  N ) )
 
Theoremrelexpreld 13780 The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  Rel  ( R ^r  N ) ) )
 
Theoremrelexpnndm 13781 The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN  /\  R  e.  V )  ->  dom  ( R ^r  N )  C_  dom 
 R )
 
Theoremrelexpdmg 13782 The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V ) 
 ->  dom  ( R ^r  N )  C_  ( dom  R  u.  ran  R ) )
 
Theoremrelexpdm 13783 The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V ) 
 ->  dom  ( R ^r  N )  C_  U. U. R )
 
Theoremrelexpdmd 13784 The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  dom  ( R ^r  N ) 
 C_  U. U. R ) )
 
Theoremrelexpnnrn 13785 The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN  /\  R  e.  V )  ->  ran  ( R ^r  N )  C_  ran 
 R )
 
Theoremrelexprng 13786 The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V ) 
 ->  ran  ( R ^r  N )  C_  ( dom  R  u.  ran  R ) )
 
Theoremrelexprn 13787 The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V ) 
 ->  ran  ( R ^r  N )  C_  U. U. R )
 
Theoremrelexprnd 13788 The range of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  ran  ( R ^r  N ) 
 C_  U. U. R ) )
 
Theoremrelexpfld 13789 The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN0  /\  R  e.  V ) 
 ->  U. U. ( R ^r  N ) 
 C_  U. U. R )
 
Theoremrelexpfldd 13790 The field of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( N  e.  NN0  ->  U. U. ( R ^r  N )  C_  U. U. R ) )
 
Theoremrelexpaddnn 13791 Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  NN  /\  M  e.  NN  /\  R  e.  V ) 
 ->  ( ( R ^r  N )  o.  ( R ^r  M ) )  =  ( R ^r  ( N  +  M ) ) )
 
Theoremrelexpuzrel 13792 The exponentiation of a class to an integer not smaller than 2 is a relation. (Contributed by RP, 23-May-2020.)
 |-  ( ( N  e.  ( ZZ>= `  2 )  /\  R  e.  V ) 
 ->  Rel  ( R ^r  N ) )
 
Theoremrelexpaddg 13793 Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020.)
 |-  ( ( N  e.  NN0  /\  ( M  e.  NN0  /\  R  e.  V  /\  ( ( N  +  M )  =  1  ->  Rel  R ) ) )  ->  ( ( R ^r  N )  o.  ( R ^r  M ) )  =  ( R ^r 
 ( N  +  M ) ) )
 
Theoremrelexpaddd 13794 Relation composition becomes addition under exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  (
 ( N  e.  NN0  /\  M  e.  NN0 )  ->  ( ( R ^r  N )  o.  ( R ^r  M ) )  =  ( R ^r  ( N  +  M ) ) ) )
 
5.8.5  Reflexive-transitive closure as an indexed union
 
Syntaxcrtrcl 13795 Extend class notation with recursively defined reflexive, transitive closure.
 class 
 t*rec
 
Definitiondf-rtrclrec 13796* The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015.)
 |-  t*rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^r  n ) )
 
Theoremdfrtrclrec2 13797* If two elements are connected by a reflexive, transitive closure, then they are connected via  n instances the relation, for some  n. (Contributed by Drahflow, 12-Nov-2015.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  ( A ( t*rec
 `  R ) B  <->  E. n  e.  NN0  A ( R ^r  n ) B ) )
 
Theoremrtrclreclem1 13798 The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  (  _I  |`  U. U. R )  C_  ( t*rec
 `  R ) )
 
Theoremrtrclreclem2 13799 The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  R  C_  ( t*rec `  R ) )
 
Theoremrtrclreclem3 13800 The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ph  ->  R  e.  _V )   =>    |-  ( ph  ->  (
 ( t*rec `  R )  o.  (
 t*rec `  R ) )  C_  ( t*rec `  R )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >