MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksfval Structured version   Visualization version   Unicode version

Theorem wksfval 26505
Description: The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v  |-  V  =  (Vtx `  G )
wksfval.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
wksfval  |-  ( G  e.  W  ->  (Walks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) } )
Distinct variable groups:    f, G, k, p    f, I, p    V, p    f, W
Allowed substitution hints:    I( k)    V( f, k)    W( k, p)

Proof of Theorem wksfval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-wlks 26495 . . 3  |- Walks  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
21a1i 11 . 2  |-  ( G  e.  W  -> Walks  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } ) )
3 fveq2 6191 . . . . . . . . 9  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
4 wksfval.i . . . . . . . . 9  |-  I  =  (iEdg `  G )
53, 4syl6eqr 2674 . . . . . . . 8  |-  ( g  =  G  ->  (iEdg `  g )  =  I )
65dmeqd 5326 . . . . . . 7  |-  ( g  =  G  ->  dom  (iEdg `  g )  =  dom  I )
7 wrdeq 13327 . . . . . . 7  |-  ( dom  (iEdg `  g )  =  dom  I  -> Word  dom  (iEdg `  g )  = Word  dom  I )
86, 7syl 17 . . . . . 6  |-  ( g  =  G  -> Word  dom  (iEdg `  g )  = Word  dom  I )
98eleq2d 2687 . . . . 5  |-  ( g  =  G  ->  (
f  e. Word  dom  (iEdg `  g )  <->  f  e. Word  dom  I ) )
10 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
11 wksfval.v . . . . . . 7  |-  V  =  (Vtx `  G )
1210, 11syl6eqr 2674 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
1312feq3d 6032 . . . . 5  |-  ( g  =  G  ->  (
p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  <->  p :
( 0 ... ( # `
 f ) ) --> V ) )
14 biidd 252 . . . . . . 7  |-  ( g  =  G  ->  (
( p `  k
)  =  ( p `
 ( k  +  1 ) )  <->  ( p `  k )  =  ( p `  ( k  +  1 ) ) ) )
155fveq1d 6193 . . . . . . . 8  |-  ( g  =  G  ->  (
(iEdg `  g ) `  ( f `  k
) )  =  ( I `  ( f `
 k ) ) )
1615eqeq1d 2624 . . . . . . 7  |-  ( g  =  G  ->  (
( (iEdg `  g
) `  ( f `  k ) )  =  { ( p `  k ) }  <->  ( I `  ( f `  k
) )  =  {
( p `  k
) } ) )
1715sseq2d 3633 . . . . . . 7  |-  ( g  =  G  ->  ( { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  (
f `  k )
)  <->  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) )
1814, 16, 17ifpbi123d 1027 . . . . . 6  |-  ( g  =  G  ->  (if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  ( f `  k
) ) )  <-> if- ( (
p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) )
1918ralbidv 2986 . . . . 5  |-  ( g  =  G  ->  ( A. k  e.  (
0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) )  <->  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) )
209, 13, 193anbi123d 1399 . . . 4  |-  ( g  =  G  ->  (
( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) )  <->  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) ) )
2120opabbidv 4716 . . 3  |-  ( g  =  G  ->  { <. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) }  =  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) } )
2221adantl 482 . 2  |-  ( ( G  e.  W  /\  g  =  G )  ->  { <. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) }  =  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) } )
23 elex 3212 . 2  |-  ( G  e.  W  ->  G  e.  _V )
24 3anass 1042 . . . 4  |-  ( ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) )  <->  ( f  e. Word  dom  I  /\  ( p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) ) )
2524opabbii 4717 . . 3  |-  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) }  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  ( p : ( 0 ... ( # `
 f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) ) }
26 fvex 6201 . . . . . . 7  |-  (iEdg `  G )  e.  _V
274, 26eqeltri 2697 . . . . . 6  |-  I  e. 
_V
2827dmex 7099 . . . . 5  |-  dom  I  e.  _V
29 wrdexg 13315 . . . . 5  |-  ( dom  I  e.  _V  -> Word  dom  I  e.  _V )
3028, 29mp1i 13 . . . 4  |-  ( G  e.  W  -> Word  dom  I  e.  _V )
31 ovex 6678 . . . . . 6  |-  ( 0 ... ( # `  f
) )  e.  _V
32 fvex 6201 . . . . . . . 8  |-  (Vtx `  G )  e.  _V
3311, 32eqeltri 2697 . . . . . . 7  |-  V  e. 
_V
3433a1i 11 . . . . . 6  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  V  e.  _V )
35 mapex 7863 . . . . . 6  |-  ( ( ( 0 ... ( # `
 f ) )  e.  _V  /\  V  e.  _V )  ->  { p  |  p : ( 0 ... ( # `  f
) ) --> V }  e.  _V )
3631, 34, 35sylancr 695 . . . . 5  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  { p  |  p : ( 0 ... ( # `  f
) ) --> V }  e.  _V )
37 simpl 473 . . . . . . 7  |-  ( ( p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) )  ->  p :
( 0 ... ( # `
 f ) ) --> V )
3837ss2abi 3674 . . . . . 6  |-  { p  |  ( p : ( 0 ... ( # `
 f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) } 
C_  { p  |  p : ( 0 ... ( # `  f
) ) --> V }
3938a1i 11 . . . . 5  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  { p  |  ( p : ( 0 ... ( # `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) } 
C_  { p  |  p : ( 0 ... ( # `  f
) ) --> V }
)
4036, 39ssexd 4805 . . . 4  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  { p  |  ( p : ( 0 ... ( # `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) }  e.  _V )
4130, 40opabex3d 7145 . . 3  |-  ( G  e.  W  ->  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  ( p : ( 0 ... ( # `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) ) }  e.  _V )
4225, 41syl5eqel 2705 . 2  |-  ( G  e.  W  ->  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) }  e.  _V )
432, 22, 23, 42fvmptd 6288 1  |-  ( G  e.  W  ->  (Walks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( # `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( I `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  (
f `  k )
) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   {copab 4712    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  iswlk  26506  wlkprop  26507  wlkv  26508
  Copyright terms: Public domain W3C validator