![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-wspthsn | Structured version Visualization version Unicode version |
Description: Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
df-wspthsn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cwwspthsn 26720 |
. 2
![]() | |
2 | vn |
. . 3
![]() ![]() | |
3 | vg |
. . 3
![]() ![]() | |
4 | cn0 11292 |
. . 3
![]() ![]() | |
5 | cvv 3200 |
. . 3
![]() ![]() | |
6 | vf |
. . . . . . 7
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | vw |
. . . . . . 7
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . 6
![]() ![]() |
10 | 3 | cv 1482 |
. . . . . . 7
![]() ![]() |
11 | cspths 26609 |
. . . . . . 7
![]() | |
12 | 10, 11 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
13 | 7, 9, 12 | wbr 4653 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13, 6 | wex 1704 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
16 | cwwlksn 26718 |
. . . . 5
![]() | |
17 | 15, 10, 16 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
18 | 14, 8, 17 | crab 2916 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 2, 3, 4, 5, 18 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 1, 19 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: wspthsn 26735 wspthnp 26737 wspn0 26820 |
Copyright terms: Public domain | W3C validator |