HomeHome Metamath Proof Explorer
Theorem List (p. 268 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 26701-26800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremusgrn2cycl 26701 In a simple graph there are no cycles with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 4-Feb-2021.)
 |-  ( ( G  e. USGraph  /\  F (Cycles `  G ) P )  ->  ( # `
  F )  =/=  2 )
 
Theoremcrctcshwlkn0lem1 26702 Lemma for crctcshwlkn0 26713. (Contributed by AV, 13-Mar-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( ( A  -  B )  +  1 )  <_  A )
 
Theoremcrctcshwlkn0lem2 26703* Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
 |-  ( ph  ->  S  e.  ( 1..^ N ) )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ( ph  /\  J  e.  ( 0 ... ( N  -  S ) ) )  ->  ( Q `  J )  =  ( P `  ( J  +  S ) ) )
 
Theoremcrctcshwlkn0lem3 26704* Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
 |-  ( ph  ->  S  e.  ( 1..^ N ) )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ( ph  /\  J  e.  ( ( ( N  -  S )  +  1 ) ... N ) )  ->  ( Q `
  J )  =  ( P `  (
 ( J  +  S )  -  N ) ) )
 
Theoremcrctcshwlkn0lem4 26705* Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
 |-  ( ph  ->  S  e.  ( 1..^ N ) )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  F  e. Word  A )   &    |-  ( ph  ->  A. i  e.  ( 0..^ N )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `  i ) )  =  { ( P `
  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i ) ) ) )   =>    |-  ( ph  ->  A. j  e.  ( 0..^ ( N  -  S ) )if- ( ( Q `  j )  =  ( Q `  ( j  +  1 ) ) ,  ( I `  ( H `  j ) )  =  { ( Q `
  j ) } ,  { ( Q `  j ) ,  ( Q `  ( j  +  1 ) ) }  C_  ( I `  ( H `  j ) ) ) )
 
Theoremcrctcshwlkn0lem5 26706* Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
 |-  ( ph  ->  S  e.  ( 1..^ N ) )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  F  e. Word  A )   &    |-  ( ph  ->  A. i  e.  ( 0..^ N )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `  i ) )  =  { ( P `
  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i ) ) ) )   =>    |-  ( ph  ->  A. j  e.  ( ( ( N  -  S )  +  1 )..^ N )if- ( ( Q `  j
 )  =  ( Q `
  ( j  +  1 ) ) ,  ( I `  ( H `  j ) )  =  { ( Q `
  j ) } ,  { ( Q `  j ) ,  ( Q `  ( j  +  1 ) ) }  C_  ( I `  ( H `  j ) ) ) )
 
Theoremcrctcshwlkn0lem6 26707* Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
 |-  ( ph  ->  S  e.  ( 1..^ N ) )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  F  e. Word  A )   &    |-  ( ph  ->  A. i  e.  ( 0..^ N )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `  i ) )  =  { ( P `
  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i ) ) ) )   &    |-  ( ph  ->  ( P `  N )  =  ( P `  0 ) )   =>    |-  ( ( ph  /\  J  =  ( N  -  S ) ) 
 -> if- ( ( Q `  J )  =  ( Q `  ( J  +  1 ) ) ,  ( I `  ( H `  J ) )  =  { ( Q `
  J ) } ,  { ( Q `  J ) ,  ( Q `  ( J  +  1 ) ) }  C_  ( I `  ( H `  J ) ) ) )
 
Theoremcrctcshwlkn0lem7 26708* Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
 |-  ( ph  ->  S  e.  ( 1..^ N ) )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  F  e. Word  A )   &    |-  ( ph  ->  A. i  e.  ( 0..^ N )if- ( ( P `  i )  =  ( P `  ( i  +  1 ) ) ,  ( I `  ( F `  i ) )  =  { ( P `
  i ) } ,  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  C_  ( I `  ( F `  i ) ) ) )   &    |-  ( ph  ->  ( P `  N )  =  ( P `  0 ) )   =>    |-  ( ph  ->  A. j  e.  ( 0..^ N )if- ( ( Q `  j )  =  ( Q `  ( j  +  1
 ) ) ,  ( I `  ( H `  j ) )  =  { ( Q `  j ) } ,  { ( Q `  j ) ,  ( Q `  ( j  +  1 ) ) }  C_  ( I `  ( H `  j ) ) ) )
 
Theoremcrctcshlem1 26709 Lemma for crctcsh 26716. (Contributed by AV, 10-Mar-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   =>    |-  ( ph  ->  N  e.  NN0 )
 
Theoremcrctcshlem2 26710 Lemma for crctcsh 26716. (Contributed by AV, 10-Mar-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   =>    |-  ( ph  ->  ( # `
  H )  =  N )
 
Theoremcrctcshlem3 26711* Lemma for crctcsh 26716. (Contributed by AV, 10-Mar-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ph  ->  ( G  e.  _V  /\  H  e.  _V  /\  Q  e.  _V ) )
 
Theoremcrctcshlem4 26712* Lemma for crctcsh 26716. (Contributed by AV, 10-Mar-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ( ph  /\  S  =  0 )  ->  ( H  =  F  /\  Q  =  P ) )
 
Theoremcrctcshwlkn0 26713* Cyclically shifting the indices of a circuit  <. F ,  P >. results in a walk  <. H ,  Q >.. (Contributed by AV, 10-Mar-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ( ph  /\  S  =/=  0 )  ->  H (Walks `  G ) Q )
 
Theoremcrctcshwlk 26714* Cyclically shifting the indices of a circuit  <. F ,  P >. results in a walk  <. H ,  Q >.. (Contributed by AV, 10-Mar-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ph  ->  H (Walks `  G ) Q )
 
Theoremcrctcshtrl 26715* Cyclically shifting the indices of a circuit  <. F ,  P >. results in a trail  <. H ,  Q >.. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ph  ->  H (Trails `  G ) Q )
 
Theoremcrctcsh 26716* Cyclically shifting the indices of a circuit  <. F ,  P >. results in a circuit  <. H ,  Q >.. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  ( ph  ->  F (Circuits `  G ) P )   &    |-  N  =  ( # `  F )   &    |-  ( ph  ->  S  e.  (
 0..^ N ) )   &    |-  H  =  ( F cyclShift  S )   &    |-  Q  =  ( x  e.  ( 0
 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S )
 ) ,  ( P `
  ( ( x  +  S )  -  N ) ) ) )   =>    |-  ( ph  ->  H (Circuits `  G ) Q )
 
16.3.7  Walks as words

In general, a walk is an alternating sequence of vertices and edges, as defined in df-wlks 26495: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Often, it is sufficient to refer to a walk by the natural sequence of its vertices, i.e omitting its edges in its representation: p(0) p(1) ... p(n-1) p(n), see the corresponding remark in [Diestel] p. 6. The concept of a Word, see df-word 13299, is the appropriate way to define such a sequence (being finite and starting at index 0) of vertices. Therefore, it is used in definitions df-wwlks 26722 and df-wwlksn 26723, and the representation of a walk as sequence of its vertices is called "walk as word".

Only for simple pseudographs, however, the edges can be uniquely reconstructed from such a representation. In other cases, there could be more than one edge between two adjacent vertices in the walk (in a multigraph), or two adjacent vertices could be connected by two different hyperedges involving additional vertices (in a hypergraph).

 
Syntaxcwwlks 26717 Extend class notation with walks (in a graph) as word over the set of vertices.
 class WWalks
 
Syntaxcwwlksn 26718 Extend class notation with walks (in a graph) of a fixed length as word over the set of vertices.
 class WWalksN
 
Syntaxcwwlksnon 26719 Extend class notation with walks between two vertices (in a graph) of a fixed length as word over the set of vertices.
 class WWalksNOn
 
Syntaxcwwspthsn 26720 Extend class notation with simple paths (in a graph) of a fixed length as word over the set of vertices.
 class WSPathsN
 
Syntaxcwwspthsnon 26721 Extend class notation with simple paths between two vertices (in a graph) of a fixed length as word over the set of vertices.
 class WSPathsNOn
 
Definitiondf-wwlks 26722* Define the set of all walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 26495. 
w  =  (/) has to be excluded because a walk always consists of at least one vertex, see wlkn0 26516. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
 |- WWalks  =  ( g  e.  _V  |->  { w  e. Word  (Vtx `  g
 )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) {
 ( w `  i
 ) ,  ( w `
  ( i  +  1 ) ) }  e.  (Edg `  g )
 ) } )
 
Definitiondf-wwlksn 26723* Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 26495. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
 |- WWalksN  =  ( n  e.  NN0 ,  g  e.  _V  |->  { w  e.  (WWalks `  g
 )  |  ( # `  w )  =  ( n  +  1 ) } )
 
Definitiondf-wwlksnon 26724* Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
 |- WWalksNOn  =  ( n  e.  NN0 ,  g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( n WWalksN  g )  |  ( ( w `  0
 )  =  a  /\  ( w `  n )  =  b ) }
 ) )
 
Definitiondf-wspthsn 26725* Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
 |- WSPathsN  =  ( n  e.  NN0 ,  g  e.  _V  |->  { w  e.  ( n WWalksN  g )  |  E. f  f (SPaths `  g ) w } )
 
Definitiondf-wspthsnon 26726* Define the collection of simple paths of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
 |- WSPathsNOn  =  ( n  e.  NN0 ,  g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  (
 a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g ) b ) w } ) )
 
Theoremwwlks 26727* The set of walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  (WWalks `  G )  =  { w  e. Word  V  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  E ) }
 
Theoremiswwlks 26728* A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( W  e.  (WWalks `  G )  <->  ( W  =/=  (/)  /\  W  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  W )  -  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
 
Theoremwwlksn 26729* The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
 |-  ( N  e.  NN0  ->  ( N WWalksN  G )  =  { w  e.  (WWalks `  G )  |  ( # `  w )  =  ( N  +  1 ) } )
 
Theoremiswwlksn 26730 A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
 |-  ( N  e.  NN0  ->  ( W  e.  ( N WWalksN  G )  <->  ( W  e.  (WWalks `  G )  /\  ( # `  W )  =  ( N  +  1 ) ) ) )
 
Theoremiswwlksnx 26731* Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( N  e.  NN0  ->  ( W  e.  ( N WWalksN  G )  <->  ( W  e. Word  V 
 /\  A. i  e.  (
 0..^ ( ( # `  W )  -  1
 ) ) { ( W `  i ) ,  ( W `  (
 i  +  1 ) ) }  e.  E  /\  ( # `  W )  =  ( N  +  1 ) ) ) )
 
Theoremwwlkbp 26732 Basic properties of a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 9-Apr-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( W  e.  (WWalks `  G )  ->  ( G  e.  _V  /\  W  e. Word  V ) )
 
Theoremwwlknbp 26733 Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 20-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( W  e.  ( N WWalksN  G )  ->  ( G  e.  _V  /\  N  e.  NN0  /\  W  e. Word  V ) )
 
Theoremwwlknp 26734* Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( W  e.  ( N WWalksN  G )  ->  ( W  e. Word  V  /\  ( # `
  W )  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
 
Theoremwspthsn 26735* The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
 |-  ( N WSPathsN  G )  =  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
 
Theoremiswspthn 26736* An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
 |-  ( W  e.  ( N WSPathsN  G )  <->  ( W  e.  ( N WWalksN  G )  /\  E. f  f (SPaths `  G ) W ) )
 
Theoremwspthnp 26737* Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.)
 |-  ( W  e.  ( N WSPathsN  G )  ->  (
 ( N  e.  NN0  /\  G  e.  _V )  /\  W  e.  ( N WWalksN  G )  /\  E. f  f (SPaths `  G ) W ) )
 
Theoremwwlksnon 26738* The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( ( N  e.  NN0  /\  G  e.  U ) 
 ->  ( N WWalksNOn  G )  =  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( N WWalksN  G )  |  (
 ( w `  0
 )  =  a  /\  ( w `  N )  =  b ) }
 ) )
 
Theoremwspthsnon 26739* The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( ( N  e.  NN0  /\  G  e.  U ) 
 ->  ( N WSPathsNOn  G )  =  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G )
 b )  |  E. f  f ( a (SPathsOn `  G ) b ) w } ) )
 
Theoremiswwlksnon 26740* The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WWalksNOn  G ) B )  =  { w  e.  ( N WWalksN  G )  |  ( ( w `  0 )  =  A  /\  ( w `  N )  =  B ) } )
 
Theoremiswspthsnon 26741* The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WSPathsNOn  G ) B )  =  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }
 )
 
Theoremwwlknon 26742 An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( W  e.  ( A ( N WWalksNOn  G ) B )  <->  ( W  e.  ( N WWalksN  G )  /\  ( W `  0 )  =  A  /\  ( W `  N )  =  B ) ) )
 
Theoremwspthnon 26743* An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( W  e.  ( A ( N WSPathsNOn  G ) B )  <->  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G ) B ) W ) ) )
 
Theoremwspthnonp 26744* Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( W  e.  ( A ( N WSPathsNOn  G ) B )  ->  (
 ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V ) 
 /\  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G ) B ) W ) ) )
 
Theoremwspthneq1eq2 26745 Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
 |-  ( ( P  e.  ( A ( N WSPathsNOn  G ) B )  /\  P  e.  ( C ( N WSPathsNOn  G ) D ) )  ->  ( A  =  C  /\  B  =  D ) )
 
Theoremwwlksn0s 26746* The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( 0 WWalksN  G )  =  { w  e. Word 
 (Vtx `  G )  |  ( # `  w )  =  1 }
 
Theoremwwlkssswrd 26747 Walks (represented by words) are words. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 9-Apr-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  (WWalks `  G )  C_ Word  V
 
Theoremwwlksn0 26748* A walk of length 0 is represented by a singleton word. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 21-May-2021.)
 |-  V  =  (Vtx `  G )   =>    |-  ( W  e.  (
 0 WWalksN  G )  ->  E. v  e.  V  W  =  <" v "> )
 
Theorem0enwwlksnge1 26749 In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
 |-  ( ( (Edg `  G )  =  (/)  /\  N  e.  NN )  ->  ( N WWalksN  G )  =  (/) )
 
Theoremwwlkswwlksn 26750 A walk of a fixed length as word is a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( W  e.  ( N WWalksN  G )  ->  W  e.  (WWalks `  G )
 )
 
Theoremwwlkssswwlksn 26751 The walks of a fixed length as words are walks (in an undirected graph) as words. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( N WWalksN  G )  C_  (WWalks `  G )
 
Theoremwwlknbp2 26752 Other basic properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( W  e.  ( N WWalksN  G )  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W )  =  ( N  +  1 ) ) )
 
Theoremwlkiswwlks1 26753 The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.)
 |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  ->  P  e.  (WWalks `  G ) ) )
 
Theoremwlklnwwlkln1 26754 The sequence of vertices in a walk of length  N is a walk as word of length  N in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( G  e. UPGraph  ->  (
 ( F (Walks `  G ) P  /\  ( # `  F )  =  N )  ->  P  e.  ( N WWalksN  G ) ) )
 
Theoremwlkiswwlks2lem1 26755* Lemma 1 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
 |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) 
 |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }
 ) )   =>    |-  ( ( P  e. Word  V 
 /\  1  <_  ( # `
  P ) ) 
 ->  ( # `  F )  =  ( ( # `
  P )  -  1 ) )
 
Theoremwlkiswwlks2lem2 26756* Lemma 2 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
 |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) 
 |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }
 ) )   =>    |-  ( ( ( # `  P )  e.  NN0  /\  I  e.  ( 0..^ ( ( # `  P )  -  1 ) ) )  ->  ( F `  I )  =  ( `' E `  { ( P `  I ) ,  ( P `  ( I  +  1 )
 ) } ) )
 
Theoremwlkiswwlks2lem3 26757* Lemma 3 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
 |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) 
 |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }
 ) )   =>    |-  ( ( P  e. Word  V 
 /\  1  <_  ( # `
  P ) ) 
 ->  P : ( 0
 ... ( # `  F ) ) --> V )
 
Theoremwlkiswwlks2lem4 26758* Lemma 4 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) 
 |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }
 ) )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
  i ) )  =  { ( P `
  i ) ,  ( P `  (
 i  +  1 ) ) } ) )
 
Theoremwlkiswwlks2lem5 26759* Lemma 5 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) 
 |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }
 ) )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  F  e. Word  dom  E ) )
 
Theoremwlkiswwlks2lem6 26760* Lemma 6 for wlkiswwlks2 26761. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  F  =  ( x  e.  ( 0..^ ( ( # `  P )  -  1 ) ) 
 |->  ( `' E `  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }
 ) )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USPGraph  /\  P  e. Word  V  /\  1  <_  ( # `  P ) )  ->  ( A. i  e.  ( 0..^ ( ( # `  P )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  ->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. i  e.  ( 0..^ ( # `  F ) ) ( E `
  ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }
 ) ) )
 
Theoremwlkiswwlks2 26761* A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  ( G  e. USPGraph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )
 
Theoremwlkiswwlks 26762* A walk as word corresponds to a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  ( G  e. USPGraph  ->  ( E. f  f (Walks `  G ) P  <->  P  e.  (WWalks `  G ) ) )
 
Theoremwlkiswwlksupgr2 26763* A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 26761 does not require  G to be a simple pseudograph, but it requires the Axiom of Choice (ac6 9302) for its proof. Notice that only the existence of a function  f can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 26761). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  ( G  e. UPGraph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )
 
Theoremwlkiswwlkupgr 26764* A walk as word corresponds to a walk in a pseudograph. This variant of wlkiswwlks 26762 does not require  G to be a simple pseudograph, but it requires (indirectly) the Axiom of Choice for its proof. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
 |-  ( G  e. UPGraph  ->  ( E. f  f (Walks `  G ) P  <->  P  e.  (WWalks `  G ) ) )
 
Theoremwlkpwwlkf1ouspgr 26765* The mapping of (ordinary) walks to their sequences of vertices is a bijection in a simple pseudograph. (Contributed by AV, 6-May-2021.)
 |-  F  =  ( w  e.  (Walks `  G )  |->  ( 2nd `  w ) )   =>    |-  ( G  e. USPGraph  ->  F : (Walks `  G ) -1-1-onto-> (WWalks `  G ) )
 
Theoremwlkisowwlkupgr 26766* The set of walks as words and the set of (ordinary) walks are isomorphic in a simple pseudograph. (Contributed by AV, 6-May-2021.)
 |-  ( G  e. USPGraph  ->  E. f  f : (Walks `  G )
 -1-1-onto-> (WWalks `  G ) )
 
Theoremwwlksm1edg 26767 Removing the trailing edge from a walk (as word) with at least one edge results in a walk. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 19-Apr-2021.)
 |-  ( ( W  e.  (WWalks `  G )  /\  2  <_  ( # `  W ) )  ->  ( W substr  <. 0 ,  ( ( # `  W )  -  1 ) >. )  e.  (WWalks `  G )
 )
 
Theoremwlklnwwlkln2lem 26768* Lemma for wlklnwwlkln2 26769 and wlklnwwlklnupgr2 26771. Formerly part of proof for wlklnwwlkln2 26769. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( ph  ->  ( P  e.  (WWalks `  G )  ->  E. f  f (Walks `  G ) P ) )   =>    |-  ( ph  ->  ( P  e.  ( N WWalksN  G )  ->  E. f
 ( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
 
Theoremwlklnwwlkln2 26769* A walk of length  N as word corresponds to the sequence of vertices in a walk of length  N in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( G  e. USPGraph  ->  ( P  e.  ( N WWalksN  G )  ->  E. f
 ( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
 
Theoremwlklnwwlkn 26770* A walk of length  N as word corresponds to a walk with length  N in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( G  e. USPGraph  ->  ( E. f ( f (Walks `  G ) P  /\  ( # `  f )  =  N )  <->  P  e.  ( N WWalksN  G ) ) )
 
Theoremwlklnwwlklnupgr2 26771* A walk of length  N as word corresponds to the sequence of vertices in a walk of length  N in a pseudograph. This variant of wlklnwwlkln2 26769 does not require  G to be a simple pseudograph, but it requires (indirectly) the Axiom of Choice. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( G  e. UPGraph  ->  ( P  e.  ( N WWalksN  G )  ->  E. f
 ( f (Walks `  G ) P  /\  ( # `  f )  =  N ) ) )
 
Theoremwlklnwwlknupgr 26772* A walk of length  N as word corresponds to a walk with length  N in a pseudograph. This variant of wlkiswwlks 40197 does not require  G to be a simple pseudograph, but it requires (indirectly) the Axiom of Choice for its proof. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
 |-  ( G  e. UPGraph  ->  ( E. f ( f (Walks `  G ) P  /\  ( # `  f )  =  N )  <->  P  e.  ( N WWalksN  G ) ) )
 
Theoremwlknewwlksn 26773 If a walk in a pseudograph has length  N, then the sequence of the vertices of the walk is a word representing the walk as word of length  N. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 11-Apr-2021.)
 |-  ( ( ( G  e. UPGraph  /\  W  e.  (Walks `  G ) )  /\  ( N  e.  NN0  /\  ( # `
  ( 1st `  W ) )  =  N ) )  ->  ( 2nd `  W )  e.  ( N WWalksN  G ) )
 
Theoremwlknwwlksnfun 26774* Lemma 1 for wlknwwlksnbij2 26778. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N }   &    |-  W  =  ( N WWalksN  G )   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. UPGraph  /\  N  e.  NN0 )  ->  F : T --> W )
 
Theoremwlknwwlksninj 26775* Lemma 2 for wlknwwlksnbij2 26778. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N }   &    |-  W  =  ( N WWalksN  G )   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. USPGraph  /\  N  e.  NN0 )  ->  F : T -1-1-> W )
 
Theoremwlknwwlksnsur 26776* Lemma 3 for wlknwwlksnbij2 26778. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N }   &    |-  W  =  ( N WWalksN  G )   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. USPGraph  /\  N  e.  NN0 )  ->  F : T -onto-> W )
 
Theoremwlknwwlksnbij 26777* Lemma 4 for wlknwwlksnbij2 26778. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N }   &    |-  W  =  ( N WWalksN  G )   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. USPGraph  /\  N  e.  NN0 )  ->  F : T -1-1-onto-> W )
 
Theoremwlknwwlksnbij2 26778* There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length in a simple pseudograph. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 15-Apr-2021.)
 |-  ( ( G  e. USPGraph  /\  N  e.  NN0 )  ->  E. f  f : { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N }
 -1-1-onto-> ( N WWalksN  G ) )
 
Theoremwlknwwlksnen 26779* In a simple pseudograph, the set of walks of a fixed length and the set of walks represented by words are equinumerous. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 15-Apr-2021.)
 |-  ( ( G  e. USPGraph  /\  N  e.  NN0 )  ->  { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N }  ~~  ( N WWalksN  G ) )
 
Theoremwlknwwlksneqs 26780* The set of walks of a fixed length and the set of walks represented by words have the same size. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 15-Apr-2021.)
 |-  ( ( G  e. USPGraph  /\  N  e.  NN0 )  ->  ( # `  { p  e.  (Walks `  G )  |  ( # `  ( 1st `  p ) )  =  N } )  =  ( # `  ( N WWalksN  G ) ) )
 
Theoremwlkwwlkfun 26781* Lemma 1 for wlkwwlkbij2 26785. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 15-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
 ( 2nd `  p ) `  0 )  =  P ) }   &    |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `
  0 )  =  P }   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. UPGraph  /\  P  e.  V  /\  N  e.  NN0 )  ->  F : T --> W )
 
Theoremwlkwwlkinj 26782* Lemma 2 for wlkwwlkbij2 26785. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Proof shortened by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 16-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
 ( 2nd `  p ) `  0 )  =  P ) }   &    |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `
  0 )  =  P }   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e.  NN0 )  ->  F : T -1-1-> W )
 
Theoremwlkwwlksur 26783* Lemma 3 for wlkwwlkbij2 26785. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Revised by AV, 16-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
 ( 2nd `  p ) `  0 )  =  P ) }   &    |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `
  0 )  =  P }   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e.  NN0 )  ->  F : T -onto-> W )
 
Theoremwlkwwlkbij 26784* Lemma 4 for wlkwwlkbij2 26785. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 16-Apr-2021.)
 |-  T  =  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
 ( 2nd `  p ) `  0 )  =  P ) }   &    |-  W  =  { w  e.  ( N WWalksN  G )  |  ( w `
  0 )  =  P }   &    |-  F  =  ( t  e.  T  |->  ( 2nd `  t )
 )   =>    |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e.  NN0 )  ->  F : T -1-1-onto-> W )
 
Theoremwlkwwlkbij2 26785* There is a bijection between the set of walks of a fixed length, starting at a fixed vertex, and the set of walks represented as words of the same length, starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 16-Apr-2021.)
 |-  ( ( G  e. USPGraph  /\  P  e.  V  /\  N  e.  NN0 )  ->  E. f  f : { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
 ( 2nd `  p ) `  0 )  =  P ) } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  P } )
 
Theoremwwlkseq 26786* Equality of two walks (as words). (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
 |-  ( ( W  e.  (WWalks `  G )  /\  T  e.  (WWalks `  G ) )  ->  ( W  =  T  <->  ( ( # `  W )  =  ( # `  T )  /\  A. i  e.  ( 0..^ ( # `  W ) ) ( W `
  i )  =  ( T `  i
 ) ) ) )
 
Theoremwwlksnred 26787 Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
 |-  ( N  e.  NN0  ->  ( W  e.  (
 ( N  +  1 ) WWalksN  G )  ->  ( W substr 
 <. 0 ,  ( N  +  1 ) >. )  e.  ( N WWalksN  G ) ) )
 
Theoremwwlksnext 26788 Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( T  e.  ( N WWalksN  G )  /\  S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  E )  ->  ( T ++  <" S "> )  e.  ( ( N  +  1 ) WWalksN  G ) )
 
Theoremwwlksnextbi 26789 Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 16-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  {
 ( lastS  `  T ) ,  S }  e.  E ) )  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G ) 
 <->  T  e.  ( N WWalksN  G ) ) )
 
Theoremwwlksnredwwlkn 26790* For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  E  =  (Edg `  G )   =>    |-  ( N  e.  NN0  ->  ( W  e.  (
 ( N  +  1 ) WWalksN  G )  ->  E. y  e.  ( N WWalksN  G )
 ( ( W substr  <. 0 ,  ( N  +  1 ) >. )  =  y 
 /\  { ( lastS  `  y
 ) ,  ( lastS  `  W ) }  e.  E ) ) )
 
Theoremwwlksnredwwlkn0 26791* For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  ->  ( ( W `  0 )  =  P  <->  E. y  e.  ( N WWalksN  G ) ( ( W substr  <. 0 ,  ( N  +  1 ) >. )  =  y  /\  ( y `  0
 )  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
 
Theoremwwlksnextwrd 26792* Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }   =>    |-  ( W  e.  ( N WWalksN  G )  ->  D  =  { w  e.  (
 ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } )
 
Theoremwwlksnextfun 26793* Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }   &    |-  R  =  { n  e.  V  |  { ( lastS  `  W ) ,  n }  e.  E }   &    |-  F  =  ( t  e.  D  |->  ( lastS  `  t ) )   =>    |-  ( N  e.  NN0 
 ->  F : D --> R )
 
Theoremwwlksnextinj 26794* Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }   &    |-  R  =  { n  e.  V  |  { ( lastS  `  W ) ,  n }  e.  E }   &    |-  F  =  ( t  e.  D  |->  ( lastS  `  t ) )   =>    |-  ( N  e.  NN0 
 ->  F : D -1-1-> R )
 
Theoremwwlksnextsur 26795* Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }   &    |-  R  =  { n  e.  V  |  { ( lastS  `  W ) ,  n }  e.  E }   &    |-  F  =  ( t  e.  D  |->  ( lastS  `  t ) )   =>    |-  ( W  e.  ( N WWalksN  G )  ->  F : D -onto-> R )
 
Theoremwwlksnextbij0 26796* Lemma for wwlksnextbij 26797. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  D  =  { w  e. Word  V  |  ( ( # `  w )  =  ( N  +  2 )  /\  ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) }   &    |-  R  =  { n  e.  V  |  { ( lastS  `  W ) ,  n }  e.  E }   &    |-  F  =  ( t  e.  D  |->  ( lastS  `  t ) )   =>    |-  ( W  e.  ( N WWalksN  G )  ->  F : D -1-1-onto-> R )
 
Theoremwwlksnextbij 26797* There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 18-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( W  e.  ( N WWalksN  G )  ->  E. f  f : { w  e.  ( ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } -1-1-onto-> { n  e.  V  |  { ( lastS  `  W ) ,  n }  e.  E } )
 
Theoremwwlksnexthasheq 26798* The number of the extensions of a walk (as word) by an edge equals the number of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 23-Aug-2018.) (Revised by AV, 19-Apr-2021.) (Proof shortened by AV, 5-May-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( W  e.  ( N WWalksN  G )  ->  ( # `
  { w  e.  ( ( N  +  1 ) WWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  +  1 ) >. )  =  W  /\  { ( lastS  `  W ) ,  ( lastS  `  w ) }  e.  E ) } )  =  ( # `  { n  e.  V  |  { ( lastS  `  W ) ,  n }  e.  E }
 ) )
 
Theoremdisjxwwlksn 26799* Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |- Disj  y  e.  ( N WWalksN  G ) { x  e. Word  V  |  ( ( x substr  <. 0 ,  N >. )  =  y 
 /\  ( y `  0 )  =  P  /\  { ( lastS  `  y
 ) ,  ( lastS  `  x ) }  e.  E ) }
 
Theoremwwlksnndef 26800 Conditions for WWalksN not being defined. (Contributed by Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.)
 |-  ( ( G  e/  _V 
 \/  N  e/  NN0 )  ->  ( N WWalksN  G )  =  (/) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >