MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsn Structured version   Visualization version   Unicode version

Theorem wspthsn 26735
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
wspthsn  |-  ( N WSPathsN  G )  =  {
w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
Distinct variable groups:    f, G, w    w, N
Allowed substitution hint:    N( f)

Proof of Theorem wspthsn
Dummy variables  g  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6659 . . . 4  |-  ( ( n  =  N  /\  g  =  G )  ->  ( n WWalksN  g )  =  ( N WWalksN  G
) )
2 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (SPaths `  g )  =  (SPaths `  G ) )
32breqd 4664 . . . . . 6  |-  ( g  =  G  ->  (
f (SPaths `  g
) w  <->  f (SPaths `  G ) w ) )
43exbidv 1850 . . . . 5  |-  ( g  =  G  ->  ( E. f  f (SPaths `  g ) w  <->  E. f 
f (SPaths `  G
) w ) )
54adantl 482 . . . 4  |-  ( ( n  =  N  /\  g  =  G )  ->  ( E. f  f (SPaths `  g )
w  <->  E. f  f (SPaths `  G ) w ) )
61, 5rabeqbidv 3195 . . 3  |-  ( ( n  =  N  /\  g  =  G )  ->  { w  e.  ( n WWalksN  g )  |  E. f  f (SPaths `  g ) w }  =  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
)
7 df-wspthsn 26725 . . 3  |- WSPathsN  =  ( n  e.  NN0 , 
g  e.  _V  |->  { w  e.  ( n WWalksN 
g )  |  E. f  f (SPaths `  g ) w }
)
8 ovex 6678 . . . 4  |-  ( N WWalksN  G )  e.  _V
98rabex 4813 . . 3  |-  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }  e.  _V
106, 7, 9ovmpt2a 6791 . 2  |-  ( ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WSPathsN  G )  =  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
)
117mpt2ndm0 6875 . . 3  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WSPathsN  G )  =  (/) )
12 df-wwlksn 26723 . . . . . 6  |- WWalksN  =  ( n  e.  NN0 , 
g  e.  _V  |->  { w  e.  (WWalks `  g )  |  (
# `  w )  =  ( n  + 
1 ) } )
1312mpt2ndm0 6875 . . . . 5  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WWalksN  G )  =  (/) )
1413rabeqdv 3194 . . . 4  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }  =  { w  e.  (/)  |  E. f  f (SPaths `  G ) w }
)
15 rab0 3955 . . . 4  |-  { w  e.  (/)  |  E. f 
f (SPaths `  G
) w }  =  (/)
1614, 15syl6eq 2672 . . 3  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }  =  (/) )
1711, 16eqtr4d 2659 . 2  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WSPathsN  G )  =  { w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
)
1810, 17pm2.61i 176 1  |-  ( N WSPathsN  G )  =  {
w  e.  ( N WWalksN  G )  |  E. f  f (SPaths `  G ) w }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   NN0cn0 11292   #chash 13117  SPathscspths 26609  WWalkscwwlks 26717   WWalksN cwwlksn 26718   WSPathsN cwwspthsn 26720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wwlksn 26723  df-wspthsn 26725
This theorem is referenced by:  iswspthn  26736  wspn0  26820
  Copyright terms: Public domain W3C validator