MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wwlksnon Structured version   Visualization version   Unicode version

Definition df-wwlksnon 26724
Description: Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
df-wwlksnon  |- WWalksNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( n WWalksN  g )  |  ( ( w `
 0 )  =  a  /\  ( w `
 n )  =  b ) } ) )
Distinct variable group:    a, b, g, n, w

Detailed syntax breakdown of Definition df-wwlksnon
StepHypRef Expression
1 cwwlksnon 26719 . 2  class WWalksNOn
2 vn . . 3  setvar  n
3 vg . . 3  setvar  g
4 cn0 11292 . . 3  class  NN0
5 cvv 3200 . . 3  class  _V
6 va . . . 4  setvar  a
7 vb . . . 4  setvar  b
83cv 1482 . . . . 5  class  g
9 cvtx 25874 . . . . 5  class Vtx
108, 9cfv 5888 . . . 4  class  (Vtx `  g )
11 cc0 9936 . . . . . . . 8  class  0
12 vw . . . . . . . . 9  setvar  w
1312cv 1482 . . . . . . . 8  class  w
1411, 13cfv 5888 . . . . . . 7  class  ( w `
 0 )
156cv 1482 . . . . . . 7  class  a
1614, 15wceq 1483 . . . . . 6  wff  ( w `
 0 )  =  a
172cv 1482 . . . . . . . 8  class  n
1817, 13cfv 5888 . . . . . . 7  class  ( w `
 n )
197cv 1482 . . . . . . 7  class  b
2018, 19wceq 1483 . . . . . 6  wff  ( w `
 n )  =  b
2116, 20wa 384 . . . . 5  wff  ( ( w `  0 )  =  a  /\  (
w `  n )  =  b )
22 cwwlksn 26718 . . . . . 6  class WWalksN
2317, 8, 22co 6650 . . . . 5  class  ( n WWalksN 
g )
2421, 12, 23crab 2916 . . . 4  class  { w  e.  ( n WWalksN  g )  |  ( ( w `
 0 )  =  a  /\  ( w `
 n )  =  b ) }
256, 7, 10, 10, 24cmpt2 6652 . . 3  class  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( n WWalksN  g )  |  ( ( w ` 
0 )  =  a  /\  ( w `  n )  =  b ) } )
262, 3, 4, 5, 25cmpt2 6652 . 2  class  ( n  e.  NN0 ,  g  e.  _V  |->  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( n WWalksN  g )  |  ( ( w ` 
0 )  =  a  /\  ( w `  n )  =  b ) } ) )
271, 26wceq 1483 1  wff WWalksNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( n WWalksN  g )  |  ( ( w `
 0 )  =  a  /\  ( w `
 n )  =  b ) } ) )
Colors of variables: wff setvar class
This definition is referenced by:  wwlksnon  26738  iswwlksnon  26740  iswspthsnon  26741  wwlksnon0  26812  wwlks2onv  26847
  Copyright terms: Public domain W3C validator