| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-wun | Structured version Visualization version Unicode version | ||
| Description: The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun 9562) whereas the analogue for Grothendieck universes requires ax-groth 9645 (see grothtsk 9657). (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-wun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cwun 9522 |
. 2
| |
| 2 | vu |
. . . . . 6
| |
| 3 | 2 | cv 1482 |
. . . . 5
|
| 4 | 3 | wtr 4752 |
. . . 4
|
| 5 | c0 3915 |
. . . . 5
| |
| 6 | 3, 5 | wne 2794 |
. . . 4
|
| 7 | vx |
. . . . . . . . 9
| |
| 8 | 7 | cv 1482 |
. . . . . . . 8
|
| 9 | 8 | cuni 4436 |
. . . . . . 7
|
| 10 | 9, 3 | wcel 1990 |
. . . . . 6
|
| 11 | 8 | cpw 4158 |
. . . . . . 7
|
| 12 | 11, 3 | wcel 1990 |
. . . . . 6
|
| 13 | vy |
. . . . . . . . . 10
| |
| 14 | 13 | cv 1482 |
. . . . . . . . 9
|
| 15 | 8, 14 | cpr 4179 |
. . . . . . . 8
|
| 16 | 15, 3 | wcel 1990 |
. . . . . . 7
|
| 17 | 16, 13, 3 | wral 2912 |
. . . . . 6
|
| 18 | 10, 12, 17 | w3a 1037 |
. . . . 5
|
| 19 | 18, 7, 3 | wral 2912 |
. . . 4
|
| 20 | 4, 6, 19 | w3a 1037 |
. . 3
|
| 21 | 20, 2 | cab 2608 |
. 2
|
| 22 | 1, 21 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: iswun 9526 |
| Copyright terms: Public domain | W3C validator |