MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Visualization version   Unicode version

Theorem grothtsk 9657
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk  |-  U. Tarski  =  _V

Proof of Theorem grothtsk
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 9646 . . . . 5  |-  E. x
( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) )
2 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
3 eltskg 9572 . . . . . . . . 9  |-  ( x  e.  _V  ->  (
x  e.  Tarski  <->  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) ) )
42, 3ax-mp 5 . . . . . . . 8  |-  ( x  e.  Tarski 
<->  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) )
54anbi2i 730 . . . . . . 7  |-  ( ( w  e.  x  /\  x  e.  Tarski )  <->  ( w  e.  x  /\  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) ) ) )
6 3anass 1042 . . . . . . 7  |-  ( ( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) )  <->  ( w  e.  x  /\  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) ) ) )
75, 6bitr4i 267 . . . . . 6  |-  ( ( w  e.  x  /\  x  e.  Tarski )  <->  ( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) )
87exbii 1774 . . . . 5  |-  ( E. x ( w  e.  x  /\  x  e. 
Tarski )  <->  E. x ( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) )
91, 8mpbir 221 . . . 4  |-  E. x
( w  e.  x  /\  x  e.  Tarski )
10 eluni 4439 . . . 4  |-  ( w  e.  U. Tarski  <->  E. x
( w  e.  x  /\  x  e.  Tarski ) )
119, 10mpbir 221 . . 3  |-  w  e. 
U. Tarski
12 vex 3203 . . 3  |-  w  e. 
_V
1311, 122th 254 . 2  |-  ( w  e.  U. Tarski  <->  w  e.  _V )
1413eqriv 2619 1  |-  U. Tarski  =  _V
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    ~~ cen 7952   Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-groth 9645
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-tsk 9571
This theorem is referenced by:  inaprc  9658  tskmval  9661  tskmcl  9663
  Copyright terms: Public domain W3C validator