| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswun | Structured version Visualization version Unicode version | ||
| Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| iswun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 4758 |
. . 3
| |
| 2 | neeq1 2856 |
. . 3
| |
| 3 | eleq2 2690 |
. . . . 5
| |
| 4 | eleq2 2690 |
. . . . 5
| |
| 5 | eleq2 2690 |
. . . . . 6
| |
| 6 | 5 | raleqbi1dv 3146 |
. . . . 5
|
| 7 | 3, 4, 6 | 3anbi123d 1399 |
. . . 4
|
| 8 | 7 | raleqbi1dv 3146 |
. . 3
|
| 9 | 1, 2, 8 | 3anbi123d 1399 |
. 2
|
| 10 | df-wun 9524 |
. 2
| |
| 11 | 9, 10 | elab2g 3353 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-wun 9524 |
| This theorem is referenced by: wuntr 9527 wununi 9528 wunpw 9529 wunpr 9531 wun0 9540 intwun 9557 r1limwun 9558 wunex2 9560 tskwun 9606 gruwun 9635 pwinfi2 37867 |
| Copyright terms: Public domain | W3C validator |