| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difdifdir | Structured version Visualization version Unicode version | ||
| Description: Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
| Ref | Expression |
|---|---|
| difdifdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif32 3891 |
. . . . 5
| |
| 2 | invdif 3868 |
. . . . 5
| |
| 3 | 1, 2 | eqtr4i 2647 |
. . . 4
|
| 4 | un0 3967 |
. . . 4
| |
| 5 | 3, 4 | eqtr4i 2647 |
. . 3
|
| 6 | indi 3873 |
. . . 4
| |
| 7 | disjdif 4040 |
. . . . . 6
| |
| 8 | incom 3805 |
. . . . . 6
| |
| 9 | 7, 8 | eqtr3i 2646 |
. . . . 5
|
| 10 | 9 | uneq2i 3764 |
. . . 4
|
| 11 | 6, 10 | eqtr4i 2647 |
. . 3
|
| 12 | 5, 11 | eqtr4i 2647 |
. 2
|
| 13 | ddif 3742 |
. . . . 5
| |
| 14 | 13 | uneq2i 3764 |
. . . 4
|
| 15 | indm 3886 |
. . . . 5
| |
| 16 | invdif 3868 |
. . . . . 6
| |
| 17 | 16 | difeq2i 3725 |
. . . . 5
|
| 18 | 15, 17 | eqtr3i 2646 |
. . . 4
|
| 19 | 14, 18 | eqtr3i 2646 |
. . 3
|
| 20 | 19 | ineq2i 3811 |
. 2
|
| 21 | invdif 3868 |
. 2
| |
| 22 | 12, 20, 21 | 3eqtri 2648 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |