MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   Unicode version

Theorem difn0 3943
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0  |-  ( ( A  \  B )  =/=  (/)  ->  A  =/=  B )

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 3657 . . 3  |-  ( A  =  B  ->  A  C_  B )
2 ssdif0 3942 . . 3  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
31, 2sylib 208 . 2  |-  ( A  =  B  ->  ( A  \  B )  =  (/) )
43necon3i 2826 1  |-  ( ( A  \  B )  =/=  (/)  ->  A  =/=  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    =/= wne 2794    \ cdif 3571    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  disjdsct  29480  bj-2upln1upl  33012
  Copyright terms: Public domain W3C validator