Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrdx Structured version   Visualization version   Unicode version

Theorem disjrdx 29404
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
disjrdx.1  |-  ( ph  ->  F : A -1-1-onto-> C )
disjrdx.2  |-  ( (
ph  /\  y  =  ( F `  x ) )  ->  D  =  B )
Assertion
Ref Expression
disjrdx  |-  ( ph  ->  (Disj  x  e.  A  B 
<-> Disj  y  e.  C  D
) )
Distinct variable groups:    x, y, A    y, B    x, C, y    x, D    x, F, y    ph, x, y
Allowed substitution hints:    B( x)    D( y)

Proof of Theorem disjrdx
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 disjrdx.1 . . . . . . 7  |-  ( ph  ->  F : A -1-1-onto-> C )
2 f1of 6137 . . . . . . 7  |-  ( F : A -1-1-onto-> C  ->  F : A
--> C )
31, 2syl 17 . . . . . 6  |-  ( ph  ->  F : A --> C )
43ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  C )
5 f1ofveu 6645 . . . . . . 7  |-  ( ( F : A -1-1-onto-> C  /\  y  e.  C )  ->  E! x  e.  A  ( F `  x )  =  y )
61, 5sylan 488 . . . . . 6  |-  ( (
ph  /\  y  e.  C )  ->  E! x  e.  A  ( F `  x )  =  y )
7 eqcom 2629 . . . . . . 7  |-  ( ( F `  x )  =  y  <->  y  =  ( F `  x ) )
87reubii 3128 . . . . . 6  |-  ( E! x  e.  A  ( F `  x )  =  y  <->  E! x  e.  A  y  =  ( F `  x ) )
96, 8sylib 208 . . . . 5  |-  ( (
ph  /\  y  e.  C )  ->  E! x  e.  A  y  =  ( F `  x ) )
10 disjrdx.2 . . . . . 6  |-  ( (
ph  /\  y  =  ( F `  x ) )  ->  D  =  B )
1110eleq2d 2687 . . . . 5  |-  ( (
ph  /\  y  =  ( F `  x ) )  ->  ( z  e.  D  <->  z  e.  B
) )
124, 9, 11rmoxfrd 29333 . . . 4  |-  ( ph  ->  ( E* y  e.  C  z  e.  D  <->  E* x  e.  A  z  e.  B ) )
1312bicomd 213 . . 3  |-  ( ph  ->  ( E* x  e.  A  z  e.  B  <->  E* y  e.  C  z  e.  D ) )
1413albidv 1849 . 2  |-  ( ph  ->  ( A. z E* x  e.  A  z  e.  B  <->  A. z E* y  e.  C  z  e.  D )
)
15 df-disj 4621 . 2  |-  (Disj  x  e.  A  B  <->  A. z E* x  e.  A  z  e.  B )
16 df-disj 4621 . 2  |-  (Disj  y  e.  C  D  <->  A. z E* y  e.  C  z  e.  D )
1714, 15, 163bitr4g 303 1  |-  ( ph  ->  (Disj  x  e.  A  B 
<-> Disj  y  e.  C  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E!wreu 2914   E*wrmo 2915  Disj wdisj 4620   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-disj 4621  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  volmeas  30294  carsggect  30380
  Copyright terms: Public domain W3C validator