| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjiund | Structured version Visualization version Unicode version | ||
| Description: Conditions for a
collection of index unions of sets |
| Ref | Expression |
|---|---|
| disjiund.1 |
|
| disjiund.2 |
|
| disjiund.3 |
|
| disjiund.4 |
|
| Ref | Expression |
|---|---|
| disjiund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4524 |
. . . . . . . . 9
| |
| 2 | eliun 4524 |
. . . . . . . . . . . 12
| |
| 3 | disjiund.2 |
. . . . . . . . . . . . . . 15
| |
| 4 | 3 | eleq2d 2687 |
. . . . . . . . . . . . . 14
|
| 5 | 4 | cbvrexv 3172 |
. . . . . . . . . . . . 13
|
| 6 | disjiund.4 |
. . . . . . . . . . . . . . . . 17
| |
| 7 | 6 | 3exp 1264 |
. . . . . . . . . . . . . . . 16
|
| 8 | 7 | rexlimdvw 3034 |
. . . . . . . . . . . . . . 15
|
| 9 | 8 | imp 445 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | rexlimdvw 3034 |
. . . . . . . . . . . . 13
|
| 11 | 5, 10 | syl5bi 232 |
. . . . . . . . . . . 12
|
| 12 | 2, 11 | syl5bi 232 |
. . . . . . . . . . 11
|
| 13 | 12 | con3d 148 |
. . . . . . . . . 10
|
| 14 | 13 | impancom 456 |
. . . . . . . . 9
|
| 15 | 1, 14 | syl5bi 232 |
. . . . . . . 8
|
| 16 | 15 | ralrimiv 2965 |
. . . . . . 7
|
| 17 | disj 4017 |
. . . . . . 7
| |
| 18 | 16, 17 | sylibr 224 |
. . . . . 6
|
| 19 | 18 | ex 450 |
. . . . 5
|
| 20 | 19 | orrd 393 |
. . . 4
|
| 21 | 20 | a1d 25 |
. . 3
|
| 22 | 21 | ralrimivv 2970 |
. 2
|
| 23 | disjiund.3 |
. . 3
| |
| 24 | disjiund.1 |
. . 3
| |
| 25 | 23, 24 | disjiunb 4642 |
. 2
|
| 26 | 22, 25 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rmo 2920 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-iun 4522 df-disj 4621 |
| This theorem is referenced by: 2wspiundisj 26856 |
| Copyright terms: Public domain | W3C validator |