MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiund Structured version   Visualization version   Unicode version

Theorem disjiund 4643
Description: Conditions for a collection of index unions of sets 
A ( a ,  b ) for  a  e.  V and  b  e.  W to be disjoint. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
disjiund.1  |-  ( a  =  c  ->  A  =  C )
disjiund.2  |-  ( b  =  d  ->  C  =  D )
disjiund.3  |-  ( a  =  c  ->  W  =  X )
disjiund.4  |-  ( (
ph  /\  x  e.  A  /\  x  e.  D
)  ->  a  =  c )
Assertion
Ref Expression
disjiund  |-  ( ph  -> Disj  a  e.  V  U_ b  e.  W  A )
Distinct variable groups:    A, c,
d, x    C, a,
d, x    D, b    V, a, c    W, b, c, d, x    X, a, b, d, x    ph, a,
b, c, d, x
Allowed substitution hints:    A( a, b)    C( b, c)    D( x, a, c, d)    V( x, b, d)    W( a)    X( c)

Proof of Theorem disjiund
StepHypRef Expression
1 eliun 4524 . . . . . . . . 9  |-  ( x  e.  U_ b  e.  W  A  <->  E. b  e.  W  x  e.  A )
2 eliun 4524 . . . . . . . . . . . 12  |-  ( x  e.  U_ b  e.  X  C  <->  E. b  e.  X  x  e.  C )
3 disjiund.2 . . . . . . . . . . . . . . 15  |-  ( b  =  d  ->  C  =  D )
43eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( b  =  d  ->  (
x  e.  C  <->  x  e.  D ) )
54cbvrexv 3172 . . . . . . . . . . . . 13  |-  ( E. b  e.  X  x  e.  C  <->  E. d  e.  X  x  e.  D )
6 disjiund.4 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A  /\  x  e.  D
)  ->  a  =  c )
763exp 1264 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  A  ->  ( x  e.  D  ->  a  =  c ) ) )
87rexlimdvw 3034 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E. b  e.  W  x  e.  A  ->  ( x  e.  D  ->  a  =  c ) ) )
98imp 445 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  E. b  e.  W  x  e.  A )  ->  (
x  e.  D  -> 
a  =  c ) )
109rexlimdvw 3034 . . . . . . . . . . . . 13  |-  ( (
ph  /\  E. b  e.  W  x  e.  A )  ->  ( E. d  e.  X  x  e.  D  ->  a  =  c ) )
115, 10syl5bi 232 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. b  e.  W  x  e.  A )  ->  ( E. b  e.  X  x  e.  C  ->  a  =  c ) )
122, 11syl5bi 232 . . . . . . . . . . 11  |-  ( (
ph  /\  E. b  e.  W  x  e.  A )  ->  (
x  e.  U_ b  e.  X  C  ->  a  =  c ) )
1312con3d 148 . . . . . . . . . 10  |-  ( (
ph  /\  E. b  e.  W  x  e.  A )  ->  ( -.  a  =  c  ->  -.  x  e.  U_ b  e.  X  C
) )
1413impancom 456 . . . . . . . . 9  |-  ( (
ph  /\  -.  a  =  c )  -> 
( E. b  e.  W  x  e.  A  ->  -.  x  e.  U_ b  e.  X  C
) )
151, 14syl5bi 232 . . . . . . . 8  |-  ( (
ph  /\  -.  a  =  c )  -> 
( x  e.  U_ b  e.  W  A  ->  -.  x  e.  U_ b  e.  X  C
) )
1615ralrimiv 2965 . . . . . . 7  |-  ( (
ph  /\  -.  a  =  c )  ->  A. x  e.  U_  b  e.  W  A  -.  x  e.  U_ b  e.  X  C )
17 disj 4017 . . . . . . 7  |-  ( (
U_ b  e.  W  A  i^i  U_ b  e.  X  C )  =  (/)  <->  A. x  e.  U_  b  e.  W  A  -.  x  e.  U_ b  e.  X  C )
1816, 17sylibr 224 . . . . . 6  |-  ( (
ph  /\  -.  a  =  c )  -> 
( U_ b  e.  W  A  i^i  U_ b  e.  X  C )  =  (/) )
1918ex 450 . . . . 5  |-  ( ph  ->  ( -.  a  =  c  ->  ( U_ b  e.  W  A  i^i  U_ b  e.  X  C )  =  (/) ) )
2019orrd 393 . . . 4  |-  ( ph  ->  ( a  =  c  \/  ( U_ b  e.  W  A  i^i  U_ b  e.  X  C
)  =  (/) ) )
2120a1d 25 . . 3  |-  ( ph  ->  ( ( a  e.  V  /\  c  e.  V )  ->  (
a  =  c  \/  ( U_ b  e.  W  A  i^i  U_ b  e.  X  C
)  =  (/) ) ) )
2221ralrimivv 2970 . 2  |-  ( ph  ->  A. a  e.  V  A. c  e.  V  ( a  =  c  \/  ( U_ b  e.  W  A  i^i  U_ b  e.  X  C
)  =  (/) ) )
23 disjiund.3 . . 3  |-  ( a  =  c  ->  W  =  X )
24 disjiund.1 . . 3  |-  ( a  =  c  ->  A  =  C )
2523, 24disjiunb 4642 . 2  |-  (Disj  a  e.  V  U_ b  e.  W  A  <->  A. a  e.  V  A. c  e.  V  ( a  =  c  \/  ( U_ b  e.  W  A  i^i  U_ b  e.  X  C )  =  (/) ) )
2622, 25sylibr 224 1  |-  ( ph  -> Disj  a  e.  V  U_ b  e.  W  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573   (/)c0 3915   U_ciun 4520  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rmo 2920  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522  df-disj 4621
This theorem is referenced by:  2wspiundisj  26856
  Copyright terms: Public domain W3C validator