Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab2 Structured version   Visualization version   Unicode version

Theorem dropab2 38652
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab2  |-  ( A. x  x  =  y  ->  { <. z ,  x >.  |  ph }  =  { <. z ,  y
>.  |  ph } )

Proof of Theorem dropab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 opeq2 4403 . . . . . . . 8  |-  ( x  =  y  ->  <. z ,  x >.  =  <. z ,  y >. )
21sps 2055 . . . . . . 7  |-  ( A. x  x  =  y  -> 
<. z ,  x >.  = 
<. z ,  y >.
)
32eqeq2d 2632 . . . . . 6  |-  ( A. x  x  =  y  ->  ( w  =  <. z ,  x >.  <->  w  =  <. z ,  y >.
) )
43anbi1d 741 . . . . 5  |-  ( A. x  x  =  y  ->  ( ( w  = 
<. z ,  x >.  /\ 
ph )  <->  ( w  =  <. z ,  y
>.  /\  ph ) ) )
54drex1 2327 . . . 4  |-  ( A. x  x  =  y  ->  ( E. x ( w  =  <. z ,  x >.  /\  ph )  <->  E. y ( w  = 
<. z ,  y >.  /\  ph ) ) )
65drex2 2328 . . 3  |-  ( A. x  x  =  y  ->  ( E. z E. x ( w  = 
<. z ,  x >.  /\ 
ph )  <->  E. z E. y ( w  = 
<. z ,  y >.  /\  ph ) ) )
76abbidv 2741 . 2  |-  ( A. x  x  =  y  ->  { w  |  E. z E. x ( w  =  <. z ,  x >.  /\  ph ) }  =  { w  |  E. z E. y
( w  =  <. z ,  y >.  /\  ph ) } )
8 df-opab 4713 . 2  |-  { <. z ,  x >.  |  ph }  =  { w  |  E. z E. x
( w  =  <. z ,  x >.  /\  ph ) }
9 df-opab 4713 . 2  |-  { <. z ,  y >.  |  ph }  =  { w  |  E. z E. y
( w  =  <. z ,  y >.  /\  ph ) }
107, 8, 93eqtr4g 2681 1  |-  ( A. x  x  =  y  ->  { <. z ,  x >.  |  ph }  =  { <. z ,  y
>.  |  ph } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704   {cab 2608   <.cop 4183   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator