| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabgf | Structured version Visualization version Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabgf.1 |
|
| elabgf.2 |
|
| elabgf.3 |
|
| Ref | Expression |
|---|---|
| elabgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf.1 |
. 2
| |
| 2 | nfab1 2766 |
. . . 4
| |
| 3 | 1, 2 | nfel 2777 |
. . 3
|
| 4 | elabgf.2 |
. . 3
| |
| 5 | 3, 4 | nfbi 1833 |
. 2
|
| 6 | eleq1 2689 |
. . 3
| |
| 7 | elabgf.3 |
. . 3
| |
| 8 | 6, 7 | bibi12d 335 |
. 2
|
| 9 | abid 2610 |
. 2
| |
| 10 | 1, 5, 8, 9 | vtoclgf 3264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
| This theorem is referenced by: elabf 3349 elabg 3351 elab3gf 3356 elrabf 3360 |
| Copyright terms: Public domain | W3C validator |