MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgf Structured version   Visualization version   Unicode version

Theorem elabgf 3348
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1  |-  F/_ x A
elabgf.2  |-  F/ x ps
elabgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elabgf  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2  |-  F/_ x A
2 nfab1 2766 . . . 4  |-  F/_ x { x  |  ph }
31, 2nfel 2777 . . 3  |-  F/ x  A  e.  { x  |  ph }
4 elabgf.2 . . 3  |-  F/ x ps
53, 4nfbi 1833 . 2  |-  F/ x
( A  e.  {
x  |  ph }  <->  ps )
6 eleq1 2689 . . 3  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
7 elabgf.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
86, 7bibi12d 335 . 2  |-  ( x  =  A  ->  (
( x  e.  {
x  |  ph }  <->  ph )  <->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
9 abid 2610 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
101, 5, 8, 9vtoclgf 3264 1  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   F/wnf 1708    e. wcel 1990   {cab 2608   F/_wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by:  elabf  3349  elabg  3351  elab3gf  3356  elrabf  3360
  Copyright terms: Public domain W3C validator