MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabf Structured version   Visualization version   Unicode version

Theorem elrabf 3360
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1  |-  F/_ x A
elrabf.2  |-  F/_ x B
elrabf.3  |-  F/ x ps
elrabf.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elrabf  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )

Proof of Theorem elrabf
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  { x  e.  B  |  ph }  ->  A  e.  _V )
2 elex 3212 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
32adantr 481 . 2  |-  ( ( A  e.  B  /\  ps )  ->  A  e. 
_V )
4 df-rab 2921 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
54eleq2i 2693 . . 3  |-  ( A  e.  { x  e.  B  |  ph }  <->  A  e.  { x  |  ( x  e.  B  /\  ph ) } )
6 elrabf.1 . . . 4  |-  F/_ x A
7 elrabf.2 . . . . . 6  |-  F/_ x B
86, 7nfel 2777 . . . . 5  |-  F/ x  A  e.  B
9 elrabf.3 . . . . 5  |-  F/ x ps
108, 9nfan 1828 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
11 eleq1 2689 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
12 elrabf.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1311, 12anbi12d 747 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
146, 10, 13elabgf 3348 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { x  |  ( x  e.  B  /\  ph ) } 
<->  ( A  e.  B  /\  ps ) ) )
155, 14syl5bb 272 . 2  |-  ( A  e.  _V  ->  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) ) )
161, 3, 15pm5.21nii 368 1  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   {cab 2608   F/_wnfc 2751   {crab 2916   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202
This theorem is referenced by:  rabtru  3361  elrab  3363  invdisjrab  4639  rabxfrd  4889  onminsb  6999  nnawordex  7717  tskwe  8776  rabssnn0fi  12785  iundisj  23316  iundisjf  29402  iundisjfi  29555  bnj1388  31101  sltval2  31809  phpreu  33393  poimirlem26  33435  rfcnpre3  39192  rfcnpre4  39193  uzwo4  39221  disjinfi  39380  allbutfiinf  39647  fsumiunss  39807  fnlimfvre  39906  stoweidlem26  40243  stoweidlem27  40244  stoweidlem31  40248  stoweidlem34  40251  stoweidlem51  40268  stoweidlem52  40269  stoweidlem59  40276  fourierdlem20  40344  fourierdlem79  40402  pimdecfgtioc  40925  smfpimcclem  41013  prmdvdsfmtnof1lem1  41496
  Copyright terms: Public domain W3C validator