Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elabrexg Structured version   Visualization version   Unicode version

Theorem elabrexg 39206
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elabrexg  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    x, A, y    y, B
Allowed substitution hints:    B( x)    V( x, y)

Proof of Theorem elabrexg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tru 1487 . . . . 5  |- T.
2 csbeq1a 3542 . . . . . . . 8  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
32equcoms 1947 . . . . . . 7  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
4 a1tru 1500 . . . . . . 7  |-  ( z  =  x  -> T.  )
53, 42thd 255 . . . . . 6  |-  ( z  =  x  ->  ( B  =  [_ z  /  x ]_ B  <-> T.  )
)
65rspcev 3309 . . . . 5  |-  ( ( x  e.  A  /\ T.  )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
71, 6mpan2 707 . . . 4  |-  ( x  e.  A  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
87adantr 481 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
9 eqeq1 2626 . . . . . 6  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
109rexbidv 3052 . . . . 5  |-  ( y  =  B  ->  ( E. z  e.  A  y  =  [_ z  /  x ]_ B  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
1110elabg 3351 . . . 4  |-  ( B  e.  V  ->  ( B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
1211adantl 482 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( B  e.  {
y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
138, 12mpbird 247 . 2  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B } )
14 nfv 1843 . . . 4  |-  F/ z  y  =  B
15 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
1615nfeq2 2780 . . . 4  |-  F/ x  y  =  [_ z  /  x ]_ B
172eqeq2d 2632 . . . 4  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
1814, 16, 17cbvrex 3168 . . 3  |-  ( E. x  e.  A  y  =  B  <->  E. z  e.  A  y  =  [_ z  /  x ]_ B )
1918abbii 2739 . 2  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }
2013, 19syl6eleqr 2712 1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   {cab 2608   E.wrex 2913   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-csb 3534
This theorem is referenced by:  upbdrech  39519  ssfiunibd  39523
  Copyright terms: Public domain W3C validator