Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliincex Structured version   Visualization version   Unicode version

Theorem eliincex 39293
Description: Counterexample to show that the additional conditions in eliin 4525 and eliin2 39299 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eliinct.1  |-  A  =  _V
eliinct.2  |-  B  =  (/)
Assertion
Ref Expression
eliincex  |-  -.  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem eliincex
StepHypRef Expression
1 eliinct.1 . . 3  |-  A  =  _V
2 nvel 4797 . . 3  |-  -.  _V  e.  |^|_ x  e.  B  C
31, 2eqneltri 39246 . 2  |-  -.  A  e.  |^|_ x  e.  B  C
4 ral0 4076 . . 3  |-  A. x  e.  (/)  A  e.  C
5 eliinct.2 . . . 4  |-  B  =  (/)
65raleqi 3142 . . 3  |-  ( A. x  e.  B  A  e.  C  <->  A. x  e.  (/)  A  e.  C )
74, 6mpbir 221 . 2  |-  A. x  e.  B  A  e.  C
8 pm3.22 465 . . . 4  |-  ( ( -.  A  e.  |^|_ x  e.  B  C  /\  A. x  e.  B  A  e.  C )  ->  ( A. x  e.  B  A  e.  C  /\  -.  A  e.  |^|_ x  e.  B  C )
)
98olcd 408 . . 3  |-  ( ( -.  A  e.  |^|_ x  e.  B  C  /\  A. x  e.  B  A  e.  C )  ->  (
( A  e.  |^|_ x  e.  B  C  /\  -.  A. x  e.  B  A  e.  C )  \/  ( A. x  e.  B  A  e.  C  /\  -.  A  e.  |^|_ x  e.  B  C ) ) )
10 xor 935 . . 3  |-  ( -.  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C )  <->  ( ( A  e.  |^|_ x  e.  B  C  /\  -.  A. x  e.  B  A  e.  C )  \/  ( A. x  e.  B  A  e.  C  /\  -.  A  e.  |^|_ x  e.  B  C )
) )
119, 10sylibr 224 . 2  |-  ( ( -.  A  e.  |^|_ x  e.  B  C  /\  A. x  e.  B  A  e.  C )  ->  -.  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
123, 7, 11mp2an 708 1  |-  -.  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator