MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpr2OLD Structured version   Visualization version   Unicode version

Theorem elpr2OLD 4200
Description: Obsolete proof of elpr2 4199 as of 23-Jul-2021. (Contributed by NM, 14-Oct-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
elpr2.1  |-  B  e. 
_V
elpr2.2  |-  C  e. 
_V
Assertion
Ref Expression
elpr2OLD  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )

Proof of Theorem elpr2OLD
StepHypRef Expression
1 elpri 4197 . 2  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
2 elpr2.1 . . . . . 6  |-  B  e. 
_V
3 eleq1 2689 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  _V  <->  B  e.  _V ) )
42, 3mpbiri 248 . . . . 5  |-  ( A  =  B  ->  A  e.  _V )
5 elpr2.2 . . . . . 6  |-  C  e. 
_V
6 eleq1 2689 . . . . . 6  |-  ( A  =  C  ->  ( A  e.  _V  <->  C  e.  _V ) )
75, 6mpbiri 248 . . . . 5  |-  ( A  =  C  ->  A  e.  _V )
84, 7jaoi 394 . . . 4  |-  ( ( A  =  B  \/  A  =  C )  ->  A  e.  _V )
9 elprg 4196 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
108, 9syl 17 . . 3  |-  ( ( A  =  B  \/  A  =  C )  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C )
) )
1110ibir 257 . 2  |-  ( ( A  =  B  \/  A  =  C )  ->  A  e.  { B ,  C } )
121, 11impbii 199 1  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   _Vcvv 3200   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator