![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version Unicode version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ibir |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomd 213 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ibi 256 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: elpr2OLD 4200 eusv2i 4863 ffdm 6062 ov 6780 ovg 6799 oacl 7615 nnacl 7691 elpm2r 7875 cdaxpdom 9011 cdafi 9012 cfcof 9096 hargch 9495 uzaddcl 11744 expcllem 12871 lcmfval 15334 lcmf0val 15335 mreunirn 16261 filunirn 21686 ustelimasn 22026 metustfbas 22362 usgreqdrusgr 26464 pjini 28558 fzspl 29550 f1ocnt 29559 xrge0tsmsbi 29786 bnj983 31021 poimirlem16 33425 poimirlem19 33428 poimirlem25 33434 ac6s6 33980 fouriersw 40448 etransclem25 40476 bits0oALTV 41592 uzlidlring 41929 linccl 42203 |
Copyright terms: Public domain | W3C validator |