MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreqpr Structured version   Visualization version   Unicode version

Theorem elpreqpr 4396
Description: Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.)
Assertion
Ref Expression
elpreqpr  |-  ( A  e.  { B ,  C }  ->  E. x { B ,  C }  =  { A ,  x } )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elpreqpr
StepHypRef Expression
1 elpri 4197 . 2  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
2 elex 3212 . 2  |-  ( A  e.  { B ,  C }  ->  A  e. 
_V )
3 elpreqprlem 4395 . . . . 5  |-  ( B  e.  _V  ->  E. x { B ,  C }  =  { B ,  x } )
4 eleq1 2689 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  _V  <->  B  e.  _V ) )
5 preq1 4268 . . . . . . . 8  |-  ( A  =  B  ->  { A ,  x }  =  { B ,  x }
)
65eqeq2d 2632 . . . . . . 7  |-  ( A  =  B  ->  ( { B ,  C }  =  { A ,  x } 
<->  { B ,  C }  =  { B ,  x } ) )
76exbidv 1850 . . . . . 6  |-  ( A  =  B  ->  ( E. x { B ,  C }  =  { A ,  x }  <->  E. x { B ,  C }  =  { B ,  x }
) )
84, 7imbi12d 334 . . . . 5  |-  ( A  =  B  ->  (
( A  e.  _V  ->  E. x { B ,  C }  =  { A ,  x }
)  <->  ( B  e. 
_V  ->  E. x { B ,  C }  =  { B ,  x }
) ) )
93, 8mpbiri 248 . . . 4  |-  ( A  =  B  ->  ( A  e.  _V  ->  E. x { B ,  C }  =  { A ,  x }
) )
109imp 445 . . 3  |-  ( ( A  =  B  /\  A  e.  _V )  ->  E. x { B ,  C }  =  { A ,  x }
)
11 elpreqprlem 4395 . . . . . 6  |-  ( C  e.  _V  ->  E. x { C ,  B }  =  { C ,  x } )
12 prcom 4267 . . . . . . . 8  |-  { C ,  B }  =  { B ,  C }
1312eqeq1i 2627 . . . . . . 7  |-  ( { C ,  B }  =  { C ,  x } 
<->  { B ,  C }  =  { C ,  x } )
1413exbii 1774 . . . . . 6  |-  ( E. x { C ,  B }  =  { C ,  x }  <->  E. x { B ,  C }  =  { C ,  x }
)
1511, 14sylib 208 . . . . 5  |-  ( C  e.  _V  ->  E. x { B ,  C }  =  { C ,  x } )
16 eleq1 2689 . . . . . 6  |-  ( A  =  C  ->  ( A  e.  _V  <->  C  e.  _V ) )
17 preq1 4268 . . . . . . . 8  |-  ( A  =  C  ->  { A ,  x }  =  { C ,  x }
)
1817eqeq2d 2632 . . . . . . 7  |-  ( A  =  C  ->  ( { B ,  C }  =  { A ,  x } 
<->  { B ,  C }  =  { C ,  x } ) )
1918exbidv 1850 . . . . . 6  |-  ( A  =  C  ->  ( E. x { B ,  C }  =  { A ,  x }  <->  E. x { B ,  C }  =  { C ,  x }
) )
2016, 19imbi12d 334 . . . . 5  |-  ( A  =  C  ->  (
( A  e.  _V  ->  E. x { B ,  C }  =  { A ,  x }
)  <->  ( C  e. 
_V  ->  E. x { B ,  C }  =  { C ,  x }
) ) )
2115, 20mpbiri 248 . . . 4  |-  ( A  =  C  ->  ( A  e.  _V  ->  E. x { B ,  C }  =  { A ,  x }
) )
2221imp 445 . . 3  |-  ( ( A  =  C  /\  A  e.  _V )  ->  E. x { B ,  C }  =  { A ,  x }
)
2310, 22jaoian 824 . 2  |-  ( ( ( A  =  B  \/  A  =  C )  /\  A  e. 
_V )  ->  E. x { B ,  C }  =  { A ,  x } )
241, 2, 23syl2anc 693 1  |-  ( A  e.  { B ,  C }  ->  E. x { B ,  C }  =  { A ,  x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  elpreqprb  4397
  Copyright terms: Public domain W3C validator