MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreqpr Structured version   Visualization version   GIF version

Theorem elpreqpr 4396
Description: Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.)
Assertion
Ref Expression
elpreqpr (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elpreqpr
StepHypRef Expression
1 elpri 4197 . 2 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
2 elex 3212 . 2 (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V)
3 elpreqprlem 4395 . . . . 5 (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})
4 eleq1 2689 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
5 preq1 4268 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝑥} = {𝐵, 𝑥})
65eqeq2d 2632 . . . . . . 7 (𝐴 = 𝐵 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐵, 𝑥}))
76exbidv 1850 . . . . . 6 (𝐴 = 𝐵 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}))
84, 7imbi12d 334 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})))
93, 8mpbiri 248 . . . 4 (𝐴 = 𝐵 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
109imp 445 . . 3 ((𝐴 = 𝐵𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
11 elpreqprlem 4395 . . . . . 6 (𝐶 ∈ V → ∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥})
12 prcom 4267 . . . . . . . 8 {𝐶, 𝐵} = {𝐵, 𝐶}
1312eqeq1i 2627 . . . . . . 7 ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥})
1413exbii 1774 . . . . . 6 (∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})
1511, 14sylib 208 . . . . 5 (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})
16 eleq1 2689 . . . . . 6 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
17 preq1 4268 . . . . . . . 8 (𝐴 = 𝐶 → {𝐴, 𝑥} = {𝐶, 𝑥})
1817eqeq2d 2632 . . . . . . 7 (𝐴 = 𝐶 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥}))
1918exbidv 1850 . . . . . 6 (𝐴 = 𝐶 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}))
2016, 19imbi12d 334 . . . . 5 (𝐴 = 𝐶 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})))
2115, 20mpbiri 248 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
2221imp 445 . . 3 ((𝐴 = 𝐶𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
2310, 22jaoian 824 . 2 (((𝐴 = 𝐵𝐴 = 𝐶) ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
241, 2, 23syl2anc 693 1 (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  elpreqprb  4397
  Copyright terms: Public domain W3C validator