MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrab3t Structured version   Visualization version   Unicode version

Theorem elrab3t 3362
Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 3364.) (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
elrab3t  |-  ( ( A. x ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A  e.  B )  ->  ( A  e.  {
x  e.  B  |  ph }  <->  ps ) )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem elrab3t
StepHypRef Expression
1 df-rab 2921 . . 3  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
21eleq2i 2693 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  A  e.  { x  |  ( x  e.  B  /\  ph ) } )
3 id 22 . . 3  |-  ( A  e.  B  ->  A  e.  B )
4 nfa1 2028 . . . . 5  |-  F/ x A. x ( x  =  A  ->  ( ph  <->  ps ) )
5 nfv 1843 . . . . 5  |-  F/ x  A  e.  B
64, 5nfan 1828 . . . 4  |-  F/ x
( A. x ( x  =  A  -> 
( ph  <->  ps ) )  /\  A  e.  B )
7 sp 2053 . . . . . 6  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  (
x  =  A  -> 
( ph  <->  ps ) ) )
8 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
98biimparc 504 . . . . . . . . 9  |-  ( ( A  e.  B  /\  x  =  A )  ->  x  e.  B )
109biantrurd 529 . . . . . . . 8  |-  ( ( A  e.  B  /\  x  =  A )  ->  ( ph  <->  ( x  e.  B  /\  ph )
) )
1110bibi1d 333 . . . . . . 7  |-  ( ( A  e.  B  /\  x  =  A )  ->  ( ( ph  <->  ps )  <->  ( ( x  e.  B  /\  ph )  <->  ps )
) )
1211pm5.74da 723 . . . . . 6  |-  ( A  e.  B  ->  (
( x  =  A  ->  ( ph  <->  ps )
)  <->  ( x  =  A  ->  ( (
x  e.  B  /\  ph )  <->  ps ) ) ) )
137, 12syl5ibcom 235 . . . . 5  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( x  =  A  -> 
( ( x  e.  B  /\  ph )  <->  ps ) ) ) )
1413imp 445 . . . 4  |-  ( ( A. x ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A  e.  B )  ->  ( x  =  A  ->  ( ( x  e.  B  /\  ph ) 
<->  ps ) ) )
156, 14alrimi 2082 . . 3  |-  ( ( A. x ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A  e.  B )  ->  A. x ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ps )
) )
16 elabgt 3347 . . 3  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( (
x  e.  B  /\  ph )  <->  ps ) ) )  ->  ( A  e. 
{ x  |  ( x  e.  B  /\  ph ) }  <->  ps )
)
173, 15, 16syl2an2 875 . 2  |-  ( ( A. x ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A  e.  B )  ->  ( A  e.  {
x  |  ( x  e.  B  /\  ph ) }  <->  ps ) )
182, 17syl5bb 272 1  |-  ( ( A. x ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A  e.  B )  ->  ( A  e.  {
x  e.  B  |  ph }  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202
This theorem is referenced by:  f1oresrab  6395  poimirlem17  33426
  Copyright terms: Public domain W3C validator