| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3t | Structured version Visualization version Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 3364.) (Contributed by Thierry Arnoux, 31-Aug-2017.) |
| Ref | Expression |
|---|---|
| elrab3t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2921 |
. . 3
| |
| 2 | 1 | eleq2i 2693 |
. 2
|
| 3 | id 22 |
. . 3
| |
| 4 | nfa1 2028 |
. . . . 5
| |
| 5 | nfv 1843 |
. . . . 5
| |
| 6 | 4, 5 | nfan 1828 |
. . . 4
|
| 7 | sp 2053 |
. . . . . 6
| |
| 8 | eleq1 2689 |
. . . . . . . . . 10
| |
| 9 | 8 | biimparc 504 |
. . . . . . . . 9
|
| 10 | 9 | biantrurd 529 |
. . . . . . . 8
|
| 11 | 10 | bibi1d 333 |
. . . . . . 7
|
| 12 | 11 | pm5.74da 723 |
. . . . . 6
|
| 13 | 7, 12 | syl5ibcom 235 |
. . . . 5
|
| 14 | 13 | imp 445 |
. . . 4
|
| 15 | 6, 14 | alrimi 2082 |
. . 3
|
| 16 | elabgt 3347 |
. . 3
| |
| 17 | 3, 15, 16 | syl2an2 875 |
. 2
|
| 18 | 2, 17 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 |
| This theorem is referenced by: f1oresrab 6395 poimirlem17 33426 |
| Copyright terms: Public domain | W3C validator |