Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem17 Structured version   Visualization version   Unicode version

Theorem poimirlem17 33426
Description: Lemma for poimir 33442 establishing existence for poimirlem18 33427. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem18.3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
poimirlem18.4  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
Assertion
Ref Expression
poimirlem17  |-  ( ph  ->  E. z  e.  S  z  =/=  T )
Distinct variable groups:    f, j, n, p, t, y, z    ph, j, n, y    j, F, n, y    j, N, n, y    T, j, n, y    ph, p, t    f, K, j, n, p, t    f, N, p, t    T, f, p    ph, z    f, F, p, t, z    z, K    z, N    t, T, z    S, j, n, p, t, y, z
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem17
StepHypRef Expression
1 poimir.0 . . . . 5  |-  ( ph  ->  N  e.  NN )
2 poimirlem22.s . . . . 5  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
3 poimirlem22.1 . . . . 5  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
4 poimirlem22.2 . . . . 5  |-  ( ph  ->  T  e.  S )
5 poimirlem18.3 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
6 poimirlem18.4 . . . . 5  |-  ( ph  ->  ( 2nd `  T
)  =  0 )
71, 2, 3, 4, 5, 6poimirlem16 33425 . . . 4  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
8 elfznn0 12433 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  NN0 )
98nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  RR )
109adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  e.  RR )
111nnzd 11481 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ZZ )
12 peano2zm 11420 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1311, 12syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
1413zred 11482 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  1 )  e.  RR )
1514adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  RR )
161nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
1716adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  RR )
18 elfzle2 12345 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <_  ( N  -  1 ) )
1918adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <_  ( N  -  1 ) )
2016ltm1d 10956 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  1 )  <  N )
2120adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  <  N )
2210, 15, 17, 19, 21lelttrd 10195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  N )
2322adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  N )
24 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  -> 
( 2nd `  t
)  =  ( 2nd `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. ) )
25 opex 4932 . . . . . . . . . . . . . . . 16  |-  <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >.  e.  _V
26 op2ndg 7181 . . . . . . . . . . . . . . . 16  |-  ( (
<. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>.  e.  _V  /\  N  e.  NN )  ->  ( 2nd `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  =  N )
2725, 1, 26sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  <. <.
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >. )  =  N )
2824, 27sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( 2nd `  t
)  =  N )
2928adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  t )  =  N )
3023, 29breqtrrd 4681 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  ( 2nd `  t ) )
3130iftrued 4094 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  if (
y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  y )
3231csbeq1d 3540 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  t
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  [_ y  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
33 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
34 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( j  =  y  ->  (
1 ... j )  =  ( 1 ... y
) )
3534imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... y ) ) )
3635xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  t ) ) "
( 1 ... y
) )  X.  {
1 } ) )
37 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  y  ->  (
j  +  1 )  =  ( y  +  1 ) )
3837oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( j  =  y  ->  (
( j  +  1 ) ... N )  =  ( ( y  +  1 ) ... N ) )
3938imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  t ) )
" ( ( y  +  1 ) ... N ) ) )
4039xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )
4136, 40uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( j  =  y  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )
4241oveq2d 6666 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
4333, 42csbie 3559 . . . . . . . . . . . 12  |-  [_ y  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
44 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  -> 
( 1st `  t
)  =  ( 1st `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. ) )
4544fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  -> 
( 1st `  ( 1st `  t ) )  =  ( 1st `  ( 1st `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. ) ) )
46 op1stg 7180 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>.  e.  _V  /\  N  e.  NN )  ->  ( 1st `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  =  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. )
4725, 1, 46sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1st `  <. <.
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >. )  =  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. )
4847fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  ( 1st `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. ) )  =  ( 1st `  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ) )
49 ovex 6678 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... N )  e. 
_V
5049mptex 6486 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  e.  _V
51 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
5249mptex 6486 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... N )  |->  if ( n  =  N , 
1 ,  ( n  +  1 ) ) )  e.  _V
5351, 52coex 7118 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )  e.  _V
5450, 53op1st 7176 . . . . . . . . . . . . . . 15  |-  ( 1st `  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )
5548, 54syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  ( 1st `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) )
5645, 55sylan9eqr 2678 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( 1st `  ( 1st `  t ) )  =  ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) )
5744, 47sylan9eqr 2678 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( 1st `  t
)  =  <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. )
5857fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( 2nd `  ( 1st `  t ) )  =  ( 2nd `  <. ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ) )
5950, 53op2nd 7177 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) )
6058, 59syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) )
6160imaeq1d 5465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( ( 2nd `  ( 1st `  t
) ) " (
1 ... y ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) ) )
6261xpeq1d 5138 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( ( ( 2nd `  ( 1st `  t ) ) "
( 1 ... y
) )  X.  {
1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } ) )
6360imaeq1d 5465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( ( 2nd `  ( 1st `  t
) ) " (
( y  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) ) )
6463xpeq1d 5138 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )
6562, 64uneq12d 3768 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) )
6656, 65oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( ( 1st `  ( 1st `  t
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
6743, 66syl5eq 2668 . . . . . . . . . . 11  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  [_ y  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
6867adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ y  / 
j ]_ ( ( 1st `  ( 1st `  t
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
6932, 68eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  t
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
7069mpteq2dva 4744 . . . . . . . 8  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
7170eqeq2d 2632 . . . . . . 7  |-  ( (
ph  /\  t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) )
7271ex 450 . . . . . 6  |-  ( ph  ->  ( t  =  <. <.
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >.  -> 
( F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) ) )
7372alrimiv 1855 . . . . 5  |-  ( ph  ->  A. t ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  -> 
( F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) ) )
74 oveq2 6658 . . . . . . . . . . 11  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  1 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )
7574eleq1d 2686 . . . . . . . . . 10  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  1 )  e.  ( 0..^ K )  <->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  e.  ( 0..^ K ) ) )
76 oveq2 6658 . . . . . . . . . . 11  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  0 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )
7776eleq1d 2686 . . . . . . . . . 10  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) ,  1 ,  0 )  ->  (
( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  0 )  e.  ( 0..^ K )  <->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  e.  ( 0..^ K ) ) )
78 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  =  ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ) )
7978oveq1d 6665 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( (
( 1st `  ( 1st `  T ) ) `
 n )  +  1 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) )
8079adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  1 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) )
81 elrabi 3359 . . . . . . . . . . . . . . . . . . 19  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
8281, 2eleq2s 2719 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
83 xp1st 7198 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
844, 82, 833syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
85 xp1st 7198 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
86 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
8784, 85, 863syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
884, 82syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
89 xp2nd 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
9088, 83, 893syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
91 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
9251, 91elab 3350 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
9390, 92sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
94 f1of 6137 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) --> ( 1 ... N
) )
9593, 94syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
96 nnuz 11723 . . . . . . . . . . . . . . . . . . 19  |-  NN  =  ( ZZ>= `  1 )
971, 96syl6eleq 2711 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
98 eluzfz1 12348 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
9997, 98syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  ( 1 ... N ) )
10095, 99ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( 1 ... N
) )
10187, 100ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  ( 0..^ K ) )
102 elfzonn0 12512 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  ( 0..^ K )  -> 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  NN0 )
103 peano2nn0 11333 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  NN0  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  e. 
NN0 )
104101, 102, 1033syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  e. 
NN0 )
105 elfzo0 12508 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  ( 0..^ K )  <->  ( (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  NN0  /\  K  e.  NN  /\  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  <  K
) )
106101, 105sylib 208 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  e.  NN0  /\  K  e.  NN  /\  ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  <  K ) )
107106simp2d 1074 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  NN )
108 elfzolt2 12479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  ( 0..^ K )  -> 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  <  K
)
109101, 108syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  <  K
)
110101, 102syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  NN0 )
111110nn0zd 11480 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  ZZ )
112107nnzd 11481 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  ZZ )
113 zltp1le 11427 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  <  K  <->  ( (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  <_  K )
)
114111, 112, 113syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  <  K  <->  ( (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  <_  K )
)
115109, 114mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  <_  K )
116 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) ` 
1 )  e.  _V
117 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( n  e.  ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) `  1
)  e.  ( 1 ... N ) ) )
118117anbi2d 740 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( ( ph  /\  n  e.  ( 1 ... N ) )  <->  ( ph  /\  ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( 1 ... N
) ) ) )
119 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( p `  n )  =  ( p `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
120119neeq1d 2853 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( (
p `  n )  =/=  K  <->  ( p `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =/=  K ) )
121120rexbidv 3052 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( E. p  e.  ran  F ( p `  n )  =/=  K  <->  E. p  e.  ran  F ( p `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =/=  K
) )
122118, 121imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
)  ->  ( (
( ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )  <->  ( ( ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  1
)  e.  ( 1 ... N ) )  ->  E. p  e.  ran  F ( p `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =/=  K ) ) )
123116, 122, 5vtocl 3259 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  1
)  e.  ( 1 ... N ) )  ->  E. p  e.  ran  F ( p `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =/=  K )
124100, 123mpdan 702 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. p  e.  ran  F ( p `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =/=  K )
125 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )  ->  ( p `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
126 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1st `  ( 1st `  T ) ) : ( 1 ... N
) --> ( 0..^ K )  ->  ( 1st `  ( 1st `  T
) )  Fn  (
1 ... N ) )
12787, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
128127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 1st `  ( 1st `  T
) )  Fn  (
1 ... N ) )
129 1ex 10035 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  _V
130 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) ) )
131129, 130ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )
132 c0ex 10034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  0  e.  _V
133 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )
135131, 134pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
136 dff1o3 6143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
137136simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
13893, 137syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
139 imain 5974 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) ) )
141 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  NN )
1428, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  NN )
143142nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  RR )
144143ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  <  ( ( y  +  1 )  +  1 ) )
145 fzdisj 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  +  1 )  <  ( ( y  +  1 )  +  1 )  ->  (
( 1 ... (
y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
146145imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  +  1 )  <  ( ( y  +  1 )  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
147 ima0 5481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
148146, 147syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  +  1 )  <  ( ( y  +  1 )  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  (/) )
149144, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  i^i  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  (/) )
150140, 149sylan9req 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )
151 fnun 5997 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
152135, 150, 151sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) ) )
153 imaundi 5545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
154142peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  NN )
155154, 96syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
156155adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
1571nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  N  e.  CC )
158 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
159157, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
160159adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  =  N )
161 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  y
) )
162 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) ) )
163161, 162syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
164163adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
165160, 164eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( y  +  1 ) ) )
166 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( y  +  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
167156, 165, 166syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... ( y  +  1 ) )  u.  (
( ( y  +  1 )  +  1 ) ... N ) ) )
168167imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) ) )
169 f1ofo 6144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
170 foima 6120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
17193, 169, 1703syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
172171adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
173168, 172eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( y  +  1 ) )  u.  ( ( ( y  +  1 )  +  1 ) ... N
) ) )  =  ( 1 ... N
) )
174153, 173syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
175174fneq2d 5982 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )  <->  ( (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) ) )
176152, 175mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( 1 ... N ) )
17749a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  e. 
_V )
178 inidm 3822 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
179 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) ) )
180 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
18193, 180syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
182181adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
183 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  ( 1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
184165, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
185142, 96syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
186 eluzfz1 12348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
187185, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
188187adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  1  e.  ( 1 ... (
y  +  1 ) ) )
189 fnfvima 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
1 ... ( y  +  1 ) )  C_  ( 1 ... N
)  /\  1  e.  ( 1 ... (
y  +  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
190182, 184, 188, 189syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
191 fvun1 6269 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ) )
192131, 134, 191mp3an12 1414 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ) )
193150, 190, 192syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) ) )
194129fvconst2 6469 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  1 )
195190, 194syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  1 )
196193, 195eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  1 )
197196adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( 1 ... N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  1 )
198128, 176, 177, 177, 178, 179, 197ofval 6906 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
( 2nd `  ( 1st `  T ) ) `
 1 )  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 ) )
199100, 198mpidan 704 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 ) )
200125, 199sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  p  =  ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) ) )  ->  (
p `  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) )
201200adantllr 755 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  ran  F )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  -> 
( p `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 ) )
202 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
203202breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
204203ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
205204csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
206 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
207206fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
208206fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
209208imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
210209xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
211208imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
212211xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
213210, 212uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
214207, 213oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
215214csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
216205, 215eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
217216mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
218217eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
219218, 2elrab2 3366 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
220219simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
2214, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
222221rneqd 5353 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ran  F  =  ran  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
223222eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( p  e.  ran  F  <-> 
p  e.  ran  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
224 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
225 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  e.  _V
226225csbex 4793 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V
227224, 226elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  ran  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  E. y  e.  ( 0 ... ( N  -  1 ) ) p  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
228223, 227syl6bb 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( p  e.  ran  F  <->  E. y  e.  (
0 ... ( N  - 
1 ) ) p  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) ) ) )
2296adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  =  0 )
230 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  0  <_  y )
231230adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  0  <_  y )
232229, 231eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  <_ 
y )
233 0re 10040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  0  e.  RR
2346, 233syl6eqel 2709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( 2nd `  T
)  e.  RR )
235 lenlt 10116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( 2nd `  T
)  e.  RR  /\  y  e.  RR )  ->  ( ( 2nd `  T
)  <_  y  <->  -.  y  <  ( 2nd `  T
) ) )
236234, 9, 235syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  <_  y  <->  -.  y  <  ( 2nd `  T
) ) )
237232, 236mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  -.  y  <  ( 2nd `  T
) )
238237iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  ( y  +  1 ) )
239238csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ ( y  +  1 )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
240 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  +  1 )  e. 
_V
241 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  =  ( y  +  1 )  ->  (
1 ... j )  =  ( 1 ... (
y  +  1 ) ) )
242241imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  ( y  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
243242xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) )
244 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  =  ( y  +  1 )  ->  (
j  +  1 )  =  ( ( y  +  1 )  +  1 ) )
245244oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  =  ( y  +  1 )  ->  (
( j  +  1 ) ... N )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
246245imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  ( y  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
247246xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )
248243, 247uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )
249248oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  =  ( y  +  1 )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
250240, 249csbie 3559 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  [_ (
y  +  1 )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
251239, 250syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
252251eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
p  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  <->  p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
253252rexbidva 3049 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( E. y  e.  ( 0 ... ( N  -  1 ) ) p  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  <->  E. y  e.  ( 0 ... ( N  -  1 ) ) p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
254228, 253bitrd 268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( p  e.  ran  F  <->  E. y  e.  (
0 ... ( N  - 
1 ) ) p  =  ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) ) ) )
255254biimpa 501 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  e.  ran  F )  ->  E. y  e.  ( 0 ... ( N  -  1 ) ) p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
256201, 255r19.29a 3078 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ran  F )  ->  (
p `  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) )
257 eqtr3 2643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  /\  K  =  ( (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) )  ->  (
p `  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =  K )
258257ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p `  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  -> 
( K  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  ->  ( p `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  K ) )
259256, 258syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  ran  F )  ->  ( K  =  ( (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  ->  ( p `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  =  K ) )
260259necon3d 2815 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ran  F )  ->  (
( p `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  =/=  K  ->  K  =/=  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 ) ) )
261260rexlimdva 3031 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. p  e. 
ran  F ( p `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  =/=  K  ->  K  =/=  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) ) )
262124, 261mpd 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  =/=  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 ) )
263104nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  e.  RR )
264107nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  RR )
265263, 264ltlend 10182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  < 
K  <->  ( ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  <_  K  /\  K  =/=  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 ) ) ) )
266115, 262, 265mpbir2and 957 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  < 
K )
267 elfzo0 12508 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  e.  ( 0..^ K )  <->  ( (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  e.  NN0  /\  K  e.  NN  /\  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  1
) )  +  1 )  <  K ) )
268104, 107, 266, 267syl3anbrc 1246 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  e.  ( 0..^ K ) )
269268adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  +  1 )  e.  ( 0..^ K ) )
27080, 269eqeltrd 2701 . . . . . . . . . . 11  |-  ( (
ph  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  1 )  e.  ( 0..^ K ) )
271270adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  1 )  e.  ( 0..^ K ) )
27287ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K ) )
273 elfzonn0 12512 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  e.  NN0 )
274272, 273syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e. 
NN0 )
275274nn0cnd 11353 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
276275addid1d 10236 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  0 )  =  ( ( 1st `  ( 1st `  T ) ) `
 n ) )
277276, 272eqeltrd 2701 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  0 )  e.  ( 0..^ K ) )
278277adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  1
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  0 )  e.  ( 0..^ K ) )
27975, 77, 271, 278ifbothda 4123 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) )  e.  ( 0..^ K ) )
280 eqid 2622 . . . . . . . . 9  |-  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )
281279, 280fmptd 6385 . . . . . . . 8  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) : ( 1 ... N ) --> ( 0..^ K ) )
282 ovex 6678 . . . . . . . . 9  |-  ( 0..^ K )  e.  _V
283282, 49elmap 7886 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  <->  ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) : ( 1 ... N ) --> ( 0..^ K ) )
284281, 283sylibr 224 . . . . . . 7  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N
) ) )
285 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  n  e.  ( 1 ... ( N  -  1 ) ) )
286 1z 11407 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
28713, 286jctil 560 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
288 elfzelz 12342 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  e.  ZZ )
289288, 286jctir 561 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
290 fzaddel 12375 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( 1 ... ( N  -  1 ) )  <-> 
( n  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
291287, 289, 290syl2an 494 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
n  e.  ( 1 ... ( N  - 
1 ) )  <->  ( n  +  1 )  e.  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
292285, 291mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
n  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
293159oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
294293adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
295292, 294eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
n  +  1 )  e.  ( ( 1  +  1 ) ... N ) )
296295ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) ( n  +  1 )  e.  ( ( 1  +  1 ) ... N ) )
297 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  y  e.  ( ( 1  +  1 ) ... N
) )
298 peano2z 11418 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  e.  ZZ )
299286, 298ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 1  +  1 )  e.  ZZ
30011, 299jctil 560 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ ) )
301 elfzelz 12342 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  y  e.  ZZ )
302301, 286jctir 561 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  (
y  e.  ZZ  /\  1  e.  ZZ )
)
303 fzsubel 12377 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( y  e.  ( ( 1  +  1 ) ... N )  <-> 
( y  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
304300, 302, 303syl2an 494 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  (
y  e.  ( ( 1  +  1 ) ... N )  <->  ( y  -  1 )  e.  ( ( ( 1  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
305297, 304mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  (
y  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  -  1 ) ) )
306 ax-1cn 9994 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
307306, 306pncan3oi 10297 . . . . . . . . . . . . . . . 16  |-  ( ( 1  +  1 )  -  1 )  =  1
308307oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( 1 ... ( N  -  1 ) )
309305, 308syl6eleq 2711 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  (
y  -  1 )  e.  ( 1 ... ( N  -  1 ) ) )
310301zcnd 11483 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  y  e.  CC )
311 elfznn 12370 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  e.  NN )
312311nncnd 11036 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  e.  CC )
313 subadd2 10285 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  n  e.  CC )  ->  (
( y  -  1 )  =  n  <->  ( n  +  1 )  =  y ) )
314306, 313mp3an2 1412 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  CC  /\  n  e.  CC )  ->  ( ( y  - 
1 )  =  n  <-> 
( n  +  1 )  =  y ) )
315314bicomd 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  CC  /\  n  e.  CC )  ->  ( ( n  + 
1 )  =  y  <-> 
( y  -  1 )  =  n ) )
316 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( n  + 
1 )  <->  ( n  +  1 )  =  y )
317 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( y  - 
1 )  <->  ( y  -  1 )  =  n )
318315, 316, 3173bitr4g 303 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  CC  /\  n  e.  CC )  ->  ( y  =  ( n  +  1 )  <-> 
n  =  ( y  -  1 ) ) )
319310, 312, 318syl2an 494 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ( ( 1  +  1 ) ... N )  /\  n  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( y  =  ( n  +  1 )  <->  n  =  (
y  -  1 ) ) )
320319ralrimiva 2966 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( 1  +  1 ) ... N )  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) ( y  =  ( n  +  1 )  <->  n  =  (
y  -  1 ) ) )
321320adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  A. n  e.  ( 1 ... ( N  -  1 ) ) ( y  =  ( n  +  1 )  <->  n  =  (
y  -  1 ) ) )
322 reu6i 3397 . . . . . . . . . . . . . 14  |-  ( ( ( y  -  1 )  e.  ( 1 ... ( N  - 
1 ) )  /\  A. n  e.  ( 1 ... ( N  - 
1 ) ) ( y  =  ( n  +  1 )  <->  n  =  ( y  -  1 ) ) )  ->  E! n  e.  (
1 ... ( N  - 
1 ) ) y  =  ( n  + 
1 ) )
323309, 321, 322syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( ( 1  +  1 ) ... N
) )  ->  E! n  e.  ( 1 ... ( N  - 
1 ) ) y  =  ( n  + 
1 ) )
324323ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  ( ( 1  +  1 ) ... N ) E! n  e.  ( 1 ... ( N  -  1 ) ) y  =  ( n  +  1 ) )
325 eqid 2622 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  +  1 ) )  =  ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )
326325f1ompt 6382 . . . . . . . . . . . 12  |-  ( ( n  e.  ( 1 ... ( N  - 
1 ) )  |->  ( n  +  1 ) ) : ( 1 ... ( N  - 
1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N )  <->  ( A. n  e.  ( 1 ... ( N  - 
1 ) ) ( n  +  1 )  e.  ( ( 1  +  1 ) ... N )  /\  A. y  e.  ( (
1  +  1 ) ... N ) E! n  e.  ( 1 ... ( N  - 
1 ) ) y  =  ( n  + 
1 ) ) )
327296, 324, 326sylanbrc 698 . . . . . . . . . . 11  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) : ( 1 ... ( N  -  1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N ) )
328 f1osng 6177 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  1  e.  _V )  ->  { <. N ,  1
>. } : { N }
-1-1-onto-> { 1 } )
3291, 129, 328sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  { <. N ,  1
>. } : { N }
-1-1-onto-> { 1 } )
33014, 16ltnled 10184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  <  N  <->  -.  N  <_  ( N  -  1 ) ) )
33120, 330mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  N  <_  ( N  -  1 ) )
332 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
333331, 332nsyl 135 . . . . . . . . . . . 12  |-  ( ph  ->  -.  N  e.  ( 1 ... ( N  -  1 ) ) )
334 disjsn 4246 . . . . . . . . . . . 12  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( 1 ... ( N  - 
1 ) ) )
335333, 334sylibr 224 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) )
336 1re 10039 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
337336ltp1i 10927 . . . . . . . . . . . . . . 15  |-  1  <  ( 1  +  1 )
338299zrei 11383 . . . . . . . . . . . . . . . 16  |-  ( 1  +  1 )  e.  RR
339336, 338ltnlei 10158 . . . . . . . . . . . . . . 15  |-  ( 1  <  ( 1  +  1 )  <->  -.  (
1  +  1 )  <_  1 )
340337, 339mpbi 220 . . . . . . . . . . . . . 14  |-  -.  (
1  +  1 )  <_  1
341 elfzle1 12344 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( ( 1  +  1 ) ... N )  ->  (
1  +  1 )  <_  1 )
342340, 341mto 188 . . . . . . . . . . . . 13  |-  -.  1  e.  ( ( 1  +  1 ) ... N
)
343 disjsn 4246 . . . . . . . . . . . . 13  |-  ( ( ( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/)  <->  -.  1  e.  ( (
1  +  1 ) ... N ) )
344342, 343mpbir 221 . . . . . . . . . . . 12  |-  ( ( ( 1  +  1 ) ... N )  i^i  { 1 } )  =  (/)
345344a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  +  1 ) ... N )  i^i  {
1 } )  =  (/) )
346 f1oun 6156 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) ) : ( 1 ... ( N  -  1 ) ) -1-1-onto-> ( ( 1  +  1 ) ... N
)  /\  { <. N , 
1 >. } : { N } -1-1-onto-> { 1 } )  /\  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N }
)  =  (/)  /\  (
( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/) ) )  ->  (
( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) )  u.  { <. N ,  1 >. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) )
347327, 329, 335, 345, 346syl22anc 1327 . . . . . . . . . 10  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )  u. 
{ <. N ,  1
>. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) )
348 elex 3212 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  _V )
3491, 348syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  _V )
350129a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  _V )
351159, 97eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
352 uzid 11702 . . . . . . . . . . . . . . . . 17  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
353 peano2uz 11741 . . . . . . . . . . . . . . . . 17  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
35413, 352, 3533syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
355159, 354eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
356 fzsplit2 12366 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
357351, 355, 356syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
358159oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
359 fzsn 12383 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
36011, 359syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N ... N
)  =  { N } )
361358, 360eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
362361uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
363357, 362eqtr2d 2657 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  { N } )  =  ( 1 ... N ) )
364 iftrue 4092 . . . . . . . . . . . . . 14  |-  ( n  =  N  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  1 )
365364adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  =  N )  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  1 )
366349, 350, 363, 365fmptapd 6437 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  u.  { <. N , 
1 >. } )  =  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
367 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  N  ->  (
n  e.  ( 1 ... ( N  - 
1 ) )  <->  N  e.  ( 1 ... ( N  -  1 ) ) ) )
368367notbid 308 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  N  ->  ( -.  n  e.  (
1 ... ( N  - 
1 ) )  <->  -.  N  e.  ( 1 ... ( N  -  1 ) ) ) )
369333, 368syl5ibrcom 237 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( n  =  N  ->  -.  n  e.  ( 1 ... ( N  -  1 ) ) ) )
370369necon2ad 2809 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  -  1 ) )  ->  n  =/=  N
) )
371370imp 445 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  n  =/=  N )
372 ifnefalse 4098 . . . . . . . . . . . . . . 15  |-  ( n  =/=  N  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  ( n  +  1 ) )
373371, 372syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( n  =  N ,  1 ,  ( n  +  1 ) )  =  ( n  +  1 ) )
374373mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( ph  ->  ( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( n  e.  ( 1 ... ( N  -  1 ) ) 
|->  ( n  +  1 ) ) )
375374uneq1d 3766 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) )  u.  { <. N , 
1 >. } )  =  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )  u. 
{ <. N ,  1
>. } ) )
376366, 375eqtr3d 2658 . . . . . . . . . . 11  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) )  =  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  + 
1 ) )  u. 
{ <. N ,  1
>. } ) )
377357, 362eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
378 uzid 11702 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  1  e.  ( ZZ>= `  1 )
)
379 peano2uz 11741 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( ZZ>= `  1
)  ->  ( 1  +  1 )  e.  ( ZZ>= `  1 )
)
380286, 378, 379mp2b 10 . . . . . . . . . . . . 13  |-  ( 1  +  1 )  e.  ( ZZ>= `  1 )
381 fzsplit2 12366 . . . . . . . . . . . . 13  |-  ( ( ( 1  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  1 )
)  ->  ( 1 ... N )  =  ( ( 1 ... 1 )  u.  (
( 1  +  1 ) ... N ) ) )
382380, 97, 381sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... N ) ) )
383 fzsn 12383 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
384286, 383ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 1 ... 1 )  =  { 1 }
385384uneq1i 3763 . . . . . . . . . . . . 13  |-  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... N ) )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) )
386385equncomi 3759 . . . . . . . . . . . 12  |-  ( ( 1 ... 1 )  u.  ( ( 1  +  1 ) ... N ) )  =  ( ( ( 1  +  1 ) ... N )  u.  {
1 } )
387382, 386syl6eq 2672 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... N
)  =  ( ( ( 1  +  1 ) ... N )  u.  { 1 } ) )
388376, 377, 387f1oeq123d 6133 . . . . . . . . . 10  |-  ( ph  ->  ( ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  <->  ( ( n  e.  ( 1 ... ( N  -  1 ) )  |->  ( n  +  1 ) )  u.  { <. N , 
1 >. } ) : ( ( 1 ... ( N  -  1 ) )  u.  { N } ) -1-1-onto-> ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) ) )
389347, 388mpbird 247 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
390 f1oco 6159 . . . . . . . . 9  |-  ( ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  /\  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
39193, 389, 390syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
392 f1oeq1 6127 . . . . . . . . 9  |-  ( f  =  ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )  -> 
( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  <-> 
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
39353, 392elab 3350 . . . . . . . 8  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  <->  ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
394391, 393sylibr 224 . . . . . . 7  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
395 opelxpi 5148 . . . . . . 7  |-  ( ( ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N
) )  /\  (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  ->  <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >.  e.  (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
396284, 394, 395syl2anc 693 . . . . . 6  |-  ( ph  -> 
<. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
3971nnnn0d 11351 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
398 nn0fz0 12437 . . . . . . 7  |-  ( N  e.  NN0  <->  N  e.  (
0 ... N ) )
399397, 398sylib 208 . . . . . 6  |-  ( ph  ->  N  e.  ( 0 ... N ) )
400 opelxpi 5148 . . . . . 6  |-  ( (
<. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  /\  N  e.  ( 0 ... N ) )  ->  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
401396, 399, 400syl2anc 693 . . . . 5  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
402 elrab3t 3362 . . . . 5  |-  ( ( A. t ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  -> 
( F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) )  /\  <. <.
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )  -> 
( <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  <-> 
F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) )
40373, 401, 402syl2anc 693 . . . 4  |-  ( ph  ->  ( <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  <-> 
F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) )
4047, 403mpbird 247 . . 3  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e. 
{ t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) } )
405404, 2syl6eleqr 2712 . 2  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e.  S )
406 fveq2 6191 . . . . . . 7  |-  ( <. <. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >.  =  T  ->  ( 2nd ` 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  =  ( 2nd `  T
) )
407406eqeq1d 2624 . . . . . 6  |-  ( <. <. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >.  =  T  ->  ( ( 2nd `  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >. )  =  N  <->  ( 2nd `  T )  =  N ) )
40827, 407syl5ibcom 235 . . . . 5  |-  ( ph  ->  ( <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  =  T  ->  ( 2nd `  T )  =  N ) )
4091nnne0d 11065 . . . . . 6  |-  ( ph  ->  N  =/=  0 )
410 neeq1 2856 . . . . . 6  |-  ( ( 2nd `  T )  =  N  ->  (
( 2nd `  T
)  =/=  0  <->  N  =/=  0 ) )
411409, 410syl5ibrcom 237 . . . . 5  |-  ( ph  ->  ( ( 2nd `  T
)  =  N  -> 
( 2nd `  T
)  =/=  0 ) )
412408, 411syld 47 . . . 4  |-  ( ph  ->  ( <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  =  T  ->  ( 2nd `  T )  =/=  0
) )
413412necon2d 2817 . . 3  |-  ( ph  ->  ( ( 2nd `  T
)  =  0  ->  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  =/= 
T ) )
4146, 413mpd 15 . 2  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  =/= 
T )
415 neeq1 2856 . . 3  |-  ( z  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  -> 
( z  =/=  T  <->  <. <. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) ` 
1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  N ,  1 ,  ( n  +  1 ) ) ) )
>. ,  N >.  =/= 
T ) )
416415rspcev 3309 . 2  |-  ( (
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  +  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  e.  S  /\  <. <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 1 ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  N ,  1 ,  ( n  + 
1 ) ) ) ) >. ,  N >.  =/= 
T )  ->  E. z  e.  S  z  =/=  T )
417405, 414, 416syl2anc 693 1  |-  ( ph  ->  E. z  e.  S  z  =/=  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem18  33427
  Copyright terms: Public domain W3C validator