| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oresrab | Structured version Visualization version Unicode version | ||
| Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| f1oresrab.1 |
|
| f1oresrab.2 |
|
| f1oresrab.3 |
|
| Ref | Expression |
|---|---|
| f1oresrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oresrab.2 |
. . . 4
| |
| 2 | f1ofun 6139 |
. . . 4
| |
| 3 | funcnvcnv 5956 |
. . . 4
| |
| 4 | 1, 2, 3 | 3syl 18 |
. . 3
|
| 5 | f1ocnv 6149 |
. . . . . 6
| |
| 6 | f1of1 6136 |
. . . . . 6
| |
| 7 | 1, 5, 6 | 3syl 18 |
. . . . 5
|
| 8 | ssrab2 3687 |
. . . . 5
| |
| 9 | f1ores 6151 |
. . . . 5
| |
| 10 | 7, 8, 9 | sylancl 694 |
. . . 4
|
| 11 | f1oresrab.1 |
. . . . . . 7
| |
| 12 | 11 | mptpreima 5628 |
. . . . . 6
|
| 13 | f1oresrab.3 |
. . . . . . . . . 10
| |
| 14 | 13 | 3expia 1267 |
. . . . . . . . 9
|
| 15 | 14 | alrimiv 1855 |
. . . . . . . 8
|
| 16 | f1of 6137 |
. . . . . . . . . . 11
| |
| 17 | 1, 16 | syl 17 |
. . . . . . . . . 10
|
| 18 | 11 | fmpt 6381 |
. . . . . . . . . 10
|
| 19 | 17, 18 | sylibr 224 |
. . . . . . . . 9
|
| 20 | 19 | r19.21bi 2932 |
. . . . . . . 8
|
| 21 | elrab3t 3362 |
. . . . . . . 8
| |
| 22 | 15, 20, 21 | syl2anc 693 |
. . . . . . 7
|
| 23 | 22 | rabbidva 3188 |
. . . . . 6
|
| 24 | 12, 23 | syl5eq 2668 |
. . . . 5
|
| 25 | f1oeq3 6129 |
. . . . 5
| |
| 26 | 24, 25 | syl 17 |
. . . 4
|
| 27 | 10, 26 | mpbid 222 |
. . 3
|
| 28 | f1orescnv 6152 |
. . 3
| |
| 29 | 4, 27, 28 | syl2anc 693 |
. 2
|
| 30 | rescnvcnv 5597 |
. . 3
| |
| 31 | f1oeq1 6127 |
. . 3
| |
| 32 | 30, 31 | ax-mp 5 |
. 2
|
| 33 | 29, 32 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: wlksnwwlknvbij 26803 clwwlksvbij 26922 rabfodom 29344 fpwrelmapffs 29509 eulerpartlemn 30443 |
| Copyright terms: Public domain | W3C validator |