Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwlim Structured version   Visualization version   Unicode version

Theorem elwlim 31769
Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
elwlim  |-  ( X  e. WLim ( R ,  A )  <->  ( X  e.  A  /\  X  =/= inf
( A ,  A ,  R )  /\  X  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) ) )

Proof of Theorem elwlim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neeq1 2856 . . . 4  |-  ( x  =  X  ->  (
x  =/= inf ( A ,  A ,  R )  <-> 
X  =/= inf ( A ,  A ,  R ) ) )
2 id 22 . . . . 5  |-  ( x  =  X  ->  x  =  X )
3 predeq3 5684 . . . . . 6  |-  ( x  =  X  ->  Pred ( R ,  A ,  x )  =  Pred ( R ,  A ,  X ) )
43supeq1d 8352 . . . . 5  |-  ( x  =  X  ->  sup ( Pred ( R ,  A ,  x ) ,  A ,  R )  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) )
52, 4eqeq12d 2637 . . . 4  |-  ( x  =  X  ->  (
x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R )  <->  X  =  sup ( Pred ( R ,  A ,  X
) ,  A ,  R ) ) )
61, 5anbi12d 747 . . 3  |-  ( x  =  X  ->  (
( x  =/= inf ( A ,  A ,  R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) )  <->  ( X  =/= inf ( A ,  A ,  R )  /\  X  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) ) ) )
7 df-wlim 31758 . . 3  |- WLim ( R ,  A )  =  { x  e.  A  |  ( x  =/= inf
( A ,  A ,  R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) ) }
86, 7elrab2 3366 . 2  |-  ( X  e. WLim ( R ,  A )  <->  ( X  e.  A  /\  ( X  =/= inf ( A ,  A ,  R )  /\  X  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) ) ) )
9 3anass 1042 . 2  |-  ( ( X  e.  A  /\  X  =/= inf ( A ,  A ,  R )  /\  X  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) )  <->  ( X  e.  A  /\  ( X  =/= inf ( A ,  A ,  R )  /\  X  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) ) ) )
108, 9bitr4i 267 1  |-  ( X  e. WLim ( R ,  A )  <->  ( X  e.  A  /\  X  =/= inf
( A ,  A ,  R )  /\  X  =  sup ( Pred ( R ,  A ,  X ) ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   Predcpred 5679   supcsup 8346  infcinf 8347  WLimcwlim 31754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-sup 8348  df-wlim 31758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator