![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcomiv | Structured version Visualization version Unicode version |
Description: Weaker form of equcomi 1944 with a dv condition on ![]() ![]() ![]() |
Ref | Expression |
---|---|
equcomiv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1939 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax7v2 1938 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpi 20 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: ax6evr 1942 |
Copyright terms: Public domain | W3C validator |