MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexv Structured version   Visualization version   Unicode version

Theorem equsexv 2109
Description: Version of equsex 2292 with a dv condition, which does not require ax-13 2246. See equsexvw 1932 for a version with two dv conditions requiring fewer axioms. See also the dual form equsalv 2108. (Contributed by BJ, 31-May-2019.)
Hypotheses
Ref Expression
equsalv.nf  |-  F/ x ps
equsalv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
equsexv  |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem equsexv
StepHypRef Expression
1 equsalv.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21pm5.32i 669 . . 3  |-  ( ( x  =  y  /\  ph )  <->  ( x  =  y  /\  ps )
)
32exbii 1774 . 2  |-  ( E. x ( x  =  y  /\  ph )  <->  E. x ( x  =  y  /\  ps )
)
4 ax6ev 1890 . . 3  |-  E. x  x  =  y
5 equsalv.nf . . . 4  |-  F/ x ps
6519.41 2103 . . 3  |-  ( E. x ( x  =  y  /\  ps )  <->  ( E. x  x  =  y  /\  ps )
)
74, 6mpbiran 953 . 2  |-  ( E. x ( x  =  y  /\  ps )  <->  ps )
83, 7bitri 264 1  |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  equsexhv  2124  sb56  2150  cleljustALT2  2186  sb10f  2456  dprd2d2  18443  poimirlem25  33434
  Copyright terms: Public domain W3C validator