MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvincg Structured version   Visualization version   Unicode version

Theorem eqvincg 3329
Description: A variable introduction law for class equality, closed form. (Contributed by Thierry Arnoux, 2-Mar-2017.)
Assertion
Ref Expression
eqvincg  |-  ( A  e.  V  ->  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem eqvincg
StepHypRef Expression
1 elisset 3215 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 ax-1 6 . . . . . 6  |-  ( x  =  A  ->  ( A  =  B  ->  x  =  A ) )
3 eqtr 2641 . . . . . . 7  |-  ( ( x  =  A  /\  A  =  B )  ->  x  =  B )
43ex 450 . . . . . 6  |-  ( x  =  A  ->  ( A  =  B  ->  x  =  B ) )
52, 4jca 554 . . . . 5  |-  ( x  =  A  ->  (
( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) ) )
65eximi 1762 . . . 4  |-  ( E. x  x  =  A  ->  E. x ( ( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) ) )
7 pm3.43 906 . . . . 5  |-  ( ( ( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) )  -> 
( A  =  B  ->  ( x  =  A  /\  x  =  B ) ) )
87eximi 1762 . . . 4  |-  ( E. x ( ( A  =  B  ->  x  =  A )  /\  ( A  =  B  ->  x  =  B ) )  ->  E. x ( A  =  B  ->  (
x  =  A  /\  x  =  B )
) )
91, 6, 83syl 18 . . 3  |-  ( A  e.  V  ->  E. x
( A  =  B  ->  ( x  =  A  /\  x  =  B ) ) )
10 19.37v 1910 . . 3  |-  ( E. x ( A  =  B  ->  ( x  =  A  /\  x  =  B ) )  <->  ( A  =  B  ->  E. x
( x  =  A  /\  x  =  B ) ) )
119, 10sylib 208 . 2  |-  ( A  e.  V  ->  ( A  =  B  ->  E. x ( x  =  A  /\  x  =  B ) ) )
12 eqtr2 2642 . . 3  |-  ( ( x  =  A  /\  x  =  B )  ->  A  =  B )
1312exlimiv 1858 . 2  |-  ( E. x ( x  =  A  /\  x  =  B )  ->  A  =  B )
1411, 13impbid1 215 1  |-  ( A  e.  V  ->  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  eqvinc  3330  funcnv5mpt  29469
  Copyright terms: Public domain W3C validator